荟聚奇文、博采众长、见贤思齐
当前位置:公文素材库 > 公文素材 > 范文素材 > 错位相减法毕业论文素材

错位相减法毕业论文素材

网站:公文素材库 | 时间:2019-05-11 14:53:28 | 移动端:错位相减法毕业论文素材

  导语:错位相减法是一种常用的数列求和方法。应用于等比数列与等差数列相乘的形式。下面是小编收集整理的错位相减法毕业论文素材,欢迎参考!

  【错位相减法毕业论文素材一】

  一、问题的提出

  a1(1-qn)我们都知道,高一课本第一册(上)在推导等比数列前n项和公式Sn= 1-q,随即在书中的第137页复习参考题三B(q≠1)的过程中运用了著名的“错位相减法”。

  组中出现了运用该方法来解决的求和问题:6、S=1+2x+3x2+??+nxn-1。 这类数列的主要特征是:已知数列{Cn}满足Cn=an?bn其中{an}等差,{bn}等比且公比不等于1,老师们形象地称这类数列{Cn}为“等差乘等比型”数列。求这类数列前n项的和时通常在和式的两边都乘以组成这个数列的等比数列的公比,然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法即所谓的“错位相减法”。 而且近年来的各地乃至全国高考的试卷中频频出现此类型的数列的求和问题,解法当然是不变的“错位相减法”,而且老师在平时的讲题中也一再强调该类型的前n项和只能用错位相减法来解决,似乎成了“自古华山一条道”的绝法。难道真的没有其他的解决方法了吗?这的确没有让我墨守成规,反而激起了我无限的探索欲。

  二、特例解决带来的启发

  当q≠1时等比数列{an}通项an=a1qn-1可变形为an=a1qn-1?a1-q=1(qn-1-qn) 1-q1-q

  于是前n项和Sn=a1a[(1-q1)+(q1-q2)+?+(qn-1-qn)]=1(1-qn) 1-q1-q

  受到上面变形的启发,我想既然等比数列的通项可以裂成两项的差的形式,那么公比不为1的“等差乘等比型”数列的通项如果也能裂成类似的形式,那么让我苦思冥想的那个求和方法不就神奇的找到了吗?在此之前,我们老师还一再强调此类数列的求和不能用裂项相消,如果这一设想成功的话,算不算是观念和方法上的一次突破。

  三、一个方法的发现

  裂项求和也是数列求和中最常用的一种方法,它的本质是将数列中的每一项都化为两项之差,并且前一项的减数恰好与后一项被减数相同,求和时中间项相抵消。

  【错位相减法毕业论文素材二】

  数列求和是数列的重要内容之一,在现行高中教材中,只对等差数列和等比数列的求和公式进行了计算推导,而数列种类繁多,形式复杂,绝大多数既非等差数列又非等比数列,也就不能直接用公式来求解。很多同学遇到数列求和问题总是感到力不从心,甚至有的同学把它看作是自己的死穴,觉得即使思考也做不出来,何必耽误时间,因此遇到这类问题就直接跳过。在这中间,错位相减是一个比较重要的内容,也是一个及其有效的解决数列求和的简便方法,但是由于它的计算量比较大,同时要反复列出几个式子并且不断求解,有的题目一眼看上去不容易找出公比,更加导致一些同学放弃或者只计算其中的一部分。实际上,通过分层次练习,总结经验,并找到规律,这类问题的求解会变得相当的简单。

  一、错位相减理论分析

  错位相减是高中数学教材中推导等比数列前n项和的一种思想方法,它在解决由一个等差数列和一个等比数列对应项之积所构成的数列求和,具有非常重要的意义。由于它的独特性与实用性,并且与课本知识紧密结合,所以,在高考中占有十分重要的地位。它所遵从的思想是一种转化的思想,经过转化可以把它转化成为等比问题求解。乘以相同的公比得到新式子,再同旧式子错位相减,就得到了一个含有等比数列的等式,细心计算,便不难求解。

  二、错位相减题目举例

  首先,我们先看一道最简单的例题,从简单题中得到启发。

  例1.已知数列an=nλnλ,求数列的和。

  解:∵Tn=λ+2λ2+…+n-1)λn-1+nλn,JY①

  两边同时乘以λ,得

  λTn=λ2+2λ3+…+n-1)λn+nλn+1,JY②

  ①-②,得

  JZ1-λ)Tn=λ+λ2+…+λn-1+λn-nλn+1,

  JZ∴1-λ)Tn=SXλ1-λn)1-λSX)-nλn+1,

  JZ∴Tn=SXλ1-λn)1-λ)2SX)-SXnλn+11-λSX).

  这是一个最简单的错位相减,同时也是解决错位相减问题的一个基础题目。

  下面,我们来看一道有些麻烦的题目。

  例二.an=1-2n)2n,求Sn.

  解:由题意知,JZan=(1-2n)2n,

  JZ∴Sn=a1+a2+a3+…+an,

  即

  DKSn=(1-2)2+(1-4)22+(1-6)23+…+(1-2n)2nDK)JY①

  ①×2得

  DK2Sn=(1-2)22+(1-4)23+…+(3-2n)2n+(1-2n)2n+1DK)JY②

  ②-①得

  JZSn=2+222+23+…+22n-(2n-1)2n+1

  JZ=2+2SX4(1-2n-1)1-2SX)-(2n-1)2n+1

  JZ=(1-n)2n+2+2n+1-6

  例二是一个具体化的错位相减问题,对于这些直接列出的题目,大多数的学生都可以做出来,出错率也比较的低,但是,在如今这样一个考验学生综合素质=的社会中,我们遇到的大多都是多个知识点结合的题目。下面我们通过一道高考题来进一步认识一下错位相减。

  例三.已知等差数列{an}的前3项和为6,前8项和为-4.

  (1)求数列的通项公式.

  (2)设bn=(4-an)qn-1q≠0,n∈求数列的前n项和.

  解:(1)设{an}的公差为d,则由已知得

  JZJB{a1+a2+a3=6a1+a2+…+a8=-4,JB)即JB{3a1+3d=68a1+28d=-4,JB)

  解得a1=3,d=-1,故an=3-n-1)=4-n.

  (2)由(1)知,bn=nqn-1,

  于是JZSn=1q0+2q1+3q2+…+nqn-1,

  若q≠1,上式两边同时乘以q.

  JZqSn=1q1+2q2+3q3+…+nqn-1,

  两式相减得:

  JZ(1-q)Sn=1+q1+q2+…+qn-1-nqn=SX1-qn1-qSX)-nqn.

  JZ∴Sn=SX1-qn(1-q)2SX)-SXnqn1-qSX)=SXnqn+1-(n+1)qn+1(1-q)2SX).

  若q=1,则Sn=1+2+3+…+n=SXnn+1)2SX),

  JZ∴Sn=JB{HL2SXn(n+1)2SX)(q=1)

  SXnqn+1-(n+1)qn+1(1-q)2SX)q≠1)HL)JB)

  针对这个问题,许多同学容易忽视对于q的讨论致使题目出错。这个问题的关键是对于等比数列的定义的认识,若是忽视了等比数列定义中对于公比的界定,则很容易导致问题出错。我们回顾例一可以发现,在例一中我们对公比进行了限定,因此,在下面的解题中就不需要进行讨论。

  三、方法总结

  A.分析题型,确定类型。错位相减问题具有很强的规律性,当然也适应特定的题目,所以,在做题之前首先需要明确题目的类型,错位相减法是否使用。首先,确定是否为数列类型的题目;其次再确定是否为求和问题;最后,通过观察通项的类型,确定是否可以使用错位相减法解决问题。错位相减法是等差数列和等比数列的有效结合,即

  JZTn=a1b1+a2b2+…+an-1bn-1+anbn

  其中an为等差数列,bn为等比数列。

  B.错位相减的做题方法

  以例1为例,即

  Tn=λ+2λ2+…+(n-1)λn-1+nλnJY①

  λTn=λ2+2λ3+…+(n-1)λn+nλn+1JY②

  (1-λ)Tn=λ+λ2+…+λn-1+λn-nλn+1JY③

  1.①×公比λ得②式(或乘以公比的倒数,解题方法类似);

  2.①-②得③(③式为:留①头,减②尾,中间对应次数相减的同系数);

  3.③里面含有n+1项;

  4.按照等比数列求和方法求③式的前n项的和,减去第n-1项;

  5.③式两边同时除以SX1λ-1SX)得最后的结果。

  在使用错位相减求和时,一定要善于识别这类题目,准确的识别是正确解题的关键。同时要十分注意等比数列的公比为负数的情形,此外,一定要注意在书写的时候注意将①②两式的“错项对齐”,即将相同幂指数的项对齐,这样有一个式子(即式①)前面空出一项,另外一个式子(即式②)后面就会多出一项,①②两式相减得到③式,在式③中除了第一项和最后一项,剩下的n-1项是一个等比数列。当然认真细致,悉心体会,记住规律,耐住性子也是相当重要的。

  “知行统一”的重要性大家应该都知道,当我们记住了理论的知识,勤加练习,反复运用才会使我们事倍功半,恰巧,错位相减正需要我们的大量练习,在不断的练习,反复的刺激我们的记忆细胞下才有可能使我们在做题的时理论练习实际,减少出错率。

来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。


错位相减法毕业论文素材》由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
链接地址:http://www.bsmz.net/gongwen/131212.html
相关文章