荟聚奇文、博采众长、见贤思齐
当前位置:公文素材库 > 公文素材 > 范文素材 > 谈谈数学美在数学教学中的作用

谈谈数学美在数学教学中的作用

网站:公文素材库 | 时间:2019-05-17 08:20:32 | 移动端:谈谈数学美在数学教学中的作用

第一篇:谈谈数学美在数学教学中的作用

“爱美之心,人皆有之”,数学之中无处不存在着数学美:对称美、和谐美、简洁美、奇异美、对立与统一美等等,在数学教学过程中展现数学美,使学生能够感受和欣赏到数学美,(请您继续关注公文素材库www.bsmz.netn)=㏒am*㏒an,sin(a+b)=sina+sinb的错误,从某种意义上是从美学观点出发的一种本性的体现。对数学内在美的深刻理解,就得到了美的薰陶,也培养了学生的思考问题的深刻性和批判性。例3已知x1/2+x1/2=8求x2+1/x的值

析解在已知条件中,求出x代入x2+1/x固然可以,但远算量大,把x1/2+x1/2看作一个整体,用“整体代入法”有:x2+1/x=x+1/x=(x1/2+x-1/2)2-2=62.

这简明解法让学生从整体思维中感受到数学的整体美、完整美、结构美,培养学生的整体现,思维的全局性。

“爱美之心,人皆有之”,美给人智慧,美给人享受,让我们享受数学,享受数学的美。

第二篇:谈谈心理学在数学教学中的重要作用

谈谈心理学在数学教学中的重要作用

逸夫中学/陈麒

摘自:《厦门逸夫中学》

摘要:数学是集理论高度抽象化和应用具体化为一体的一门科学知识。教师在课堂上仅仅答疑解惑是不够的,必须注重对学生的心理引导,充分发挥学生主观能动性,还原学生课堂主体,激发学生寻幽探微的兴趣,这样课堂知识才能真正为学生所占有。本文拟分析如何在数学教学中有意识的引入心理学,改变传统数学教学的单一模式,通过积极创设问题情境,引导学生积极参与和主动思考,进而实现课堂教学中的“师生互动”、“生生互动”,达到最佳教学效果。

关键词:数学教学,心理学,论文

教学活动的根本出发点和最终归宿,就是为了解决学生与所学知识间的矛盾,而要解决这一矛盾,学生必须自身参加教师指导下的一切学习活动,如积极主动地接受有关信息,进行独立思考,并经常向老师提供反馈信息,注意学习活动的自我评价和自我调控等。学生是学习过程的主人,是认识的主体、发展的主体和处理信息的主体。因此,只有通过学生自己积极地、主动地、独立地进行学习,才能将课程知识结构转化为学生自己的认知结构和能力。学生在学习上的这种主观能动作用,是任何其它因素所不能代替的,这是学生学习活动发展的唯一的内部原因。

那么,教学过程中如何发挥学生主体的积极性,使其积极、主动地参与教学活动呢?

1、确立正确的教师行为。现代心理学的研究表明,认知与情感是密不可分的,有效的认知往往伴随着肯定、赞许、羡慕等积极的情感,厌烦、不满、轻视等否定的情感难以产生积极的认知,情绪、情感具有感染性,教师本身的情感状态,能对学生起着潜移默化的作用,使课堂上出现某种心理气氛。因此,在教学中教师首先应尊重学生,使自己与学生、学生与学生之间形成良好的、和谐的、民主的关系。其次,教师应成为引导学生学会寻求知识、吸取知识、运用知识,寻求机会的“向导”和“组织者”,成为深刻地理解学生观点、想法和情感特征的“知音”,这样,学生就能以极大的热情、饱满的情绪投入到教学过程中去,形成和谐、积极、友好的教学气氛。

2、创设问题情境,激发学生思维的积极性。主动性的心理特征就是积极地开展思维活动,所谓“课堂气氛活跃”,真正的活跃是指学生思维活动活跃,而不是指对那种没有思考性的问题答来答去的表面热闹。思维总是在分析问题、解决问题的过程中进行的。一般的情况是,当一个人产生了必须排除某一个困难时,或是要了解某一个问题时,思维活动就活跃起来。希尔伯特有句名言:问题是数学的灵魂。在数学中概念、定理、公式及法则等虽然都是重要的,但与问题相比其重要性还不居首位,概念、定理、公式及法则等所构成的理论是数学思维的结果,而问题才是思维的开始,在数学中没有问题就不可能引起思维。

心理学的研究认为,学生思维是否活跃,除了与他们对学习某知识的目的、兴趣等有关外,主要取决于他们有否解决问题的需要。“不愤不启”、“不悱不发”,“愤”和“悱”就是学生

对于知识“心求迫而未得”,“口欲言而不能”的急需状态。在这种情境下,教师所讲授的原理、论证,所提出的问题就能引起学生高度的注意,积极地思维,并产生克服困难探求知识的愿望和动力。

因此,在教学中教师若能给学生创设这种“愤”和“悱”的情境,即创设存在问题和发现问题的情境,就能使学生的思维活跃起来,从而生动活泼地、主动地去探求和掌握知识。

例如,在讲授“平行线的判定”时,可以这样给学生提出问题:“如果你面前有两条直线,问你这两条直线是不是平行线?你如何作出判断呢?”这时学生会回答,“我就看这两条直线是不是相交,如果不相交,那么这两条直线就是平行线。”然后教师就在黑板上画出两条眼睛看见是不相交的直线,让学生作出判断,学生会不加思索的判断为平行线。于是教师提出疑问:“你能肯定地说这两条直线是不相交的直线吗?我们现在看到的这一部分是不相交的,但你能肯定的说在远处它们也是不相交的吗?”这一问便使学生陷入了思考,经过思考,学生会对自己先前作出的判断产生动摇,发现自己作出判断的根据并不充分,从而懂得直接根据平行线的定义去进行判断是很困难的,由此激发思维的积极性,并跟随教师一道去探索判断两条直线平行的判定方法。

又如,在讲授“一元二次方程的根与系数的关系”时,可以这样来创设问题情境:先让学生解一个二次项系数是1的一元二次方程,然后给学生提出问题,“请同学们观察我们所解的这个一元二次方程,看它的根与系数之间有怎样的关系呢?”这样,学生思维的积极性就被调动起来了,谁都想第一个发现这种关系。进而再让学生解一个二次项系数不是1的一元二次方程,再让学生观察找出根与系数之间的关系,使学生的思维积极性进入第二个高潮。由于这两个方程的根与系数的关系的表现形式是不一样的,于是教师给学生提出第三个问题,“能不能把这两个方程的根与系数的关系统一起来呢?”这就使学生的思维积极性进入第三个高潮。通过分析、比较、归纳这两个方程的根与系数之间的关系的共同规律性,从而引出韦达定理。

再如,讲授“二次函数y=ax2+bx+c的图像和性质”时,第一个例题是:在同一坐标系内,画出函数y=x2,y=(x+3)2,y=(x+3)2-2的图象。

在解题前,先让学生观察指出,这三个二次函数的表达式有什么相同之处,有什么不同之处,发现它们之间的联系。然后给学生提出问题:“这三个函数的表达式之间有着这样一种特殊关系,那么,它们的图像之间会有怎样的关系呢?”这样,就使学生产生了要解答这个问题的愿望,激发起思维的积极性,从而边思考,边专心地看教师解题。

有学者对诸多创造心理因素进行过调查分析,这一分析表明,在社会科学研究、自然科学基础研究、自然科学应用研究、自然科学开发研究及科技管理研究这五大类研究中,在创造心理因素中,其作用大小占第一位的都是自学能力。自学能力在整个自然科学的创造活动中的作用都是很突出的。

在数学教学中,发展和培养学生的观察能力、思维能力、自学能力、操作能力是最为重要的,这四种能力结合起来,有助于学生独立地分析问题和解决问题能力的发展。而思维能力在各种能力中居于核心地位,是各种能力发展的关键。数学教学大纲也明确指出:“数学教学中,发展思维能力是培养能力的核心”,所以培养学生的思维能力,是教学工作的一项重要任务。

思维是学生掌握知识的主要的心理过程。发展学生的思维能力既是学生掌握知识的前提,又是发展学生能力的核心。那么,怎样培养学生的思维能力呢?

1、教会学生“执果索因”,培养思维的逻辑性。

逻辑思维是以概念为思维材料,以语言为载体,每推进一步都有充分依据的思维,它以抽象性为主要特征,其基本形式是概念、判断与推理。因此,所谓逻辑思维能力就是正确、合理地进行思考的能力。数学学习过程就是解决问题的过程,而逻辑推理能力就是解决问题的能力。

2、教会学生当思维受阻时,如何转换思维,培养思维的灵活性。

思维的灵活性是指能够根据客观条件的发展与变化,及时地改变先前的思维过程,寻找解决问题的新途径。思维灵活性是数学思维的重要思维品质,它在数学学习中活跃地表现为解题能力,即有的放矢地转化解题方法的能力,灵巧地从一种解题思路转向于另一种思路的能力;或是指具有超脱出习惯处理方法约束的能力,当条件变更时能迅速找到新的方法,也能随着新知识的掌握和经验的积累而重新安排已学会的知识;还表现为从已知因素中看出新的因素,从隐蔽的数学关系中找到问题的实质。

爱因斯坦把思维的灵活性看成是创造性的典型特点。因此,在教学中教师还要教会学生当思维受阻时,如何去调整思维。

3、教给学生一种想象的思维方法----猜想。

猜想是对研究的问题进行观察、实验、分析、比较、联想、类比、归纳等,依据已有的材料和知识作出符合一定的经验与事实的推测性想象的思维方法。

美国著名的数学教育家g.波利亚指出:“在你证明一个数学定理之前,必须猜到这个定理,在你搞清楚证明的细节之前,你必须猜到这个定理证明的主导思想。”数学猜想是数学证明的前提,“数学事实首先是被猜想,然后是被证实。”数学教学中或解题中进行的探索,是关于问题结论或关于解题思路、方法以及答案的形式、范围、数值的猜想。因此,在教学中教师还应教会学生去进行猜想。

总之,教师在教学过程中,若能注重培养学生的思维能力,那么,这样的教学就可以说是为学生未来的创造而引导学生进行创造性学习的教学。而学生只要在学习过程中学会了思维方法,发展了思维能力,从而也发展了思维的创造性,那么,他就能够独立地去进行思索、分析和解决各种各样的数学问题,并富于探索与创新的精神。

第三篇:谈谈学具在数学教学中的作用

谈谈学具在数学教学中的作用

山东省博兴县吕艺镇辛集小学高曰泉

数学学具作为数学中一种新生事物一出现,就显露出其强有力的生命力。它的利用成为数学教学改革,落实素质教育,培养学生学习能力等不可缺少的重要手段。下面粗浅的谈几点自己教学中的感受和体会。

一、使用学具能有效的调动学生所有感官,符合学生的认知规

律。

在数学教学中,利用学具教学就是要求学生多动手进行实际操作,调动其多种感官参加活动,从不同角度去观察和认识事物。学生通过实际操作获得的结论印象是深刻的。例如:在教学小学数学圆锥体积时,让学生通过实验自行获得圆锥体积是它等底等高的圆柱体积的1/3这一规律。其具体步骤如下:教学中教师组织教学后,先不急于引入课题,而是引导学生拿出学具做游戏。学具袋中有一个圆柱和三个不同的圆锥体器皿,让学生动手操作,分别用三个不同的圆锥体器皿盛沙土倒入圆柱体器皿中三次。学生参与热情高涨,积极投入活动之中。不久就会惊奇地发现:其中有一个圆锥体器皿三次盛的沙土和圆柱体盛的沙土一样多。这时,学生因年龄小,只发现问题,还没有认真分析原因,教师应抓住时机,让学生再研究这个圆柱体和三个圆锥体的关系。学生因发现了问题,为能找到答案,活动非常“卖力”。很快就会发现:三个圆锥体中,一个同圆柱体等底但不等高;一个同圆柱体等高但不等底;一个同圆柱体等底等高,并且只有这个同圆柱体等底等高的圆锥体三次盛的沙正好同圆柱体器皿盛的沙一样多。这时,教师适时出示课题,让学生研究圆锥体的体积,学生就会通过旧知识的迁移得到:圆锥体积是它等底等高的圆柱体积的1/3。

二、 使用学具能有效的调动学生质疑积极性,促进学生思维的

发展。

学起于思,思源于疑,疑则诱发探索,从而发现真理。科学发明与创造也正是从质疑开始,从解疑入手。然而,过去数学教学中一般都是教师先教,然后学

生根据教师提供的方法和结论模仿例题做一些类似的题目。学生仅靠死记硬背学习一些前人的知识和经验,在这中教学模式下,根本培养不出创造性人才。

随着学具的使用,传统的教学模式已经打破。在学具教学中,学生所探索的问题已不是那些只靠模仿或套用教师已经教过的例题就可解答的问题。对小学生来说,它属于一种从未涉入的新领域,是一种需要学生大胆质疑,创造性的利用旧知识来解决新问题的新思路。例如:在教学梯形面积计算时,我并没有积极引导学生通过旋转和平移推导梯形面积公式,而是大胆放手让学生利用学具材料自己研究如何求出梯形面积。由于学生人人参与研究,使得学习热情高涨,解法也各异:有的学生把梯形分成两部分,一部分为平行四边形,一部分为三角形,再利用原有知识解答问题;有的学生把梯形分为三部分,一部分为长方形,另外两部分为三角形,再求出面积;有的还用割补法使梯形变为平行四边形再来求面积;还有的发现学具中两个完全相同的梯形正好拼成为一个平行四边形,于是求出平行四边形的面积除以2便得到梯形面积等等。可以说学生的解法百花齐放,百家争鸣。此时,教师首先肯定其解法的正确性,然后引导学生质疑:实际生活中的一些梯形不便于割补,我们怎样求它们的面积呢?是否寻求一个通用的公式呢?此时引导,进一步调动学生思维的活跃性,学生积极投入活动中,最后通过旋转和平移推导出梯形面积公式。正是这种无疑——有疑——解疑的不断变化,促使学生思维积极灵活的运用,在探索问题的过程中,使知识不断深化,能力逐步提高。

三、 使用学具能有效的面向全体学生,促进学生情感、态度、

价值观的变化。

苏霍姆林斯基说过:“教学和教育的艺术在于揭示每个儿童的力量的可能性,使他们感到在智力劳动中取得成绩的喜悦。”学具的产生改变了过去利用教具分组实验的教学模式。在分组实验中,几个学生一组,共同操作一套设备,那些思维活跃,能力强的学生势必成为教学的主角。“差生”还没发现问题,想出解决的办法就随着“潮流”得到答案了,常此以往,“差生”必定真的成为差生了。而学具可以使学生真正动起来,充分调动学生的积极性,挖掘其内在潜力,切实体现了其主体地位。使每位学生都尝试到成功的喜悦,获得成功的快感,从而促进其情感、态度、价值观的良性变化。

四、 使用学具可以加强课本与实际生活的联系。

我们学习知识是为了更好的服务于生产生活,反过来说知识又来源于生活,数学知识更与实际生活有着密切地联系。有些学生没有把数学知识与实际生活联系起来,把它们看作是毫无联系的两回事,于是不理解课本上的应用题所表述的意思。使用学具可以解决这一问题,使课本知识与实际生活联系起来。在教学“圆柱的表面积”这一内容时,由于学生已经认识了圆柱的特征及圆柱的侧面展开图,在教学时,我没有按课本上的例题进行教学,而是先引导学生根据圆柱的侧面展开图推导出圆柱侧面积的计算方法,然后让每组学生拿出课前准备好的圆柱形实物,如圆柱形的茶叶筒、易拉罐等,讨论:要做这样一个盒子,需要多少铁皮?分组讨论计算方法,全班交流后,再进行测量、计算,最后总结出圆柱表面积的计算方法。这一过程不仅拉近了数学知识与实际生活的联系,同时也培养了学生的动手操作能力和小组合作意识。可以说,学具在课本知识与实际生活间搭建了一座桥梁,使学生可以自由、轻松地学习。

综上所述,在课堂教学中适时、适度地引导学生操作学具,让学生摆一摆、拼一拼、量一量、想一想、讲一讲等多种教学手段综合应用,使学生手、眼、口、脑多种感官参与认识活动。这样,不但激发了学生的求知欲和好奇心,而且学生的观察能力、语言表达能力、空间想象能力和逻辑思维能力都能得到训练和加强。这样,学生获取的知识、概念会更清晰,记忆会更牢固,使课堂教学收到事半功倍的效果。

第四篇:数学论文 数学美在教学中的作用和几点尝试

数学美在教学中的作用和几点尝试

我们知道,数学具有简单美、和谐美、奇异美等特征。但数学美却蕴藏于它所特有的抽象符号、严格语言,演译体系中。没有音乐中的抒情旋律、没有美术中鲜艳的画面、没有文学中动人的诗歌。因而缺乏数学素养的人往往感到它枯燥单调,神秘莫测,难以唤起审美情趣。著名的哲学家沙利文却这样说过:“优美的公式就如但丁神曲中的诗句,黎曼的几何与钢琴合奏曲一样优美。”而作为当今时代中的一名数学教师更应该清楚并运用数学中的数学美,把它渗透在日常的教学过程之中,让学生置身于数学教学情境之中,发展思维,提高能力。

一、数学美在教学中的作用

(一)揭示数学美,提高学生钻研数学的主动性

数学学习虽然在创造性欲望的满足上无法与数学发现相比,但同样可以享受到“再发现”和“再创造”的喜悦。一个概念的透彻理解,一个定理的巧妙证明,一个公式的正确使用,一个方法的恰到好处的运用,特别是一道难题经过冥思苦想后的突然悟出,真似“蓦然回首,那人却在灯火阑珊处”。

在圆的计算的教学中,为了加强学生对圆面积推导过程的理解和应用,我应用了数学中的简单美特征,发给学生材料,先由学生按照印好的线剪拼,推导计算公式,然后小组讨论能否拼成其他图形。学生在相互讨论中剪拼成了三角形、梯形,在我的指导下也推导出了圆的面积计算公式。在这过程中,他们兴趣盎然,眼中闪耀着成功的喜悦。

(二)启迪思维活动

开发智力,提高能力的核心是发展思维。在数学学习中,一个数学题的解法是否合理,除了有实践标准和逻辑标准之外,还有美学标准。

例如应用题的解法常有多种,我们也提倡解决问题的方法多样化,那么在这多种解法中如何判断其优劣呢?其最主要也是最基本的标准——是否简捷。如:“一条路长1200米,某工程队前3天修了全长的1/5,照这样计算,修完这条路还需几天?”

解法一:(1200-1200x1/5)÷(1200x1/5+3)=12(天)

解法二:1200+(1200x1/5+3)一3=12(天)

解法三:[(1-1/5)÷1/5]x3=12(天)

解法四:3÷1/5—3=12(天)

后两种解法运算量小,道理也很清楚,特别是第四种解法.利用天数与与工作量的关系,一下子算出总天数,再减去已用的3天,马上得解,因而也是最清楚、最美的解法。

(三)深化理解知识

在平面图形的周长和面积这一课的复习过程中,我首先让学生回忆了所学过的平面图形,然后组织小组讨论我们可以把这样的平面图形怎么进行分类?为什么?讨论和分类的过程,也是理解这些图形的内在联系的过程,学生通过图形的分类及用字母表示数量,得到的各种计算方式的极为优美的简洁的表达形式,体会到了数学所特有的美。

(四)陶冶思想情操

爱美是人的天性。人之爱美,在年少时尤为突出,我们要让学生在美的享受中开启心灵,引起精神的升华。充分利用生动的材料.以数学美的魅力拨动学生的心弦,使他们在享受数学美的愉悦中增长知识,受到教益,并在情感上产生共鸣,才能收到陶冶情操的良好效果。在教圆的周长这一课时,我结合介绍我国古代数学家祖冲之,他把圆周率的值精确计算到了

3.1415926-3.1415927之间,这在古代是多么的伟大啊,不言而喻,我国数学的辉煌成就中所体现出来的数学美,是给学生进行爱国主义教育的极好材料。又如,数学中的曲线不仅具有柔和而流畅的外形,而且还可以赋予丰富深刻的含义:圆,象征完美,象征团圆,而曲线则暗示着某种人生真谛。

二、实施美育的尝试

(一)培养学生的审美意识

数学美虽是一种真实的美,但它是美的高级形式。因此,数学究竟美在何处,学生不可能轻易意识到。这就需要教师在教学中,有意识地培养学生的数学美感直觉,引导他们去发现美鉴赏美,从而提高审美能力。

例如:在数学“组合图形的面积计算时”,我先用多媒体放映生活记实片,带领学生观察生活,到生活中去寻找数学。学生观察,捕捉到生活中的许许多多已学过的平面图形,然后定格在数学图形上,让学生提出问题,并思考如何解决,这样变抽象的说教为形象的演示。利用多媒体手段,打破时空局限,激活创造思维。

(二)创造数学优美环境

数学是一门科学,也是一门艺术。数学教学必须根据学生的心理特点,遵循教学规律。运用美育原则,通过教师的精心设计,把数学材料的静态集合转化成切合学生心理水平的教学的动态过程,造成一种知识与能力的结合,数学与艺术交融,教师与学生共鸣的优美环境。例如,为了推导圆锥体积公式,根据教材要求和学生实际,我设计了如下教学过程:

1、提出问题,引起猜想。

问:我们是怎么推导圆柱体积的?现在要推导圆锥的体积,该怎么办?为什么?继而通过讨论,引起猜想。

2、实际演示、证实猜想。

拿出事先准备的等底等高的圆柱、圆锥。把它们的容积近似地看成它们的体积,通过实验得出结论:等底等高的圆锥体积是圆柱体积的三分之一。

讨论:如果不等底等高,结论能成立吗?

数学教学的实质是思维过程的教学,教师须对课堂教学的全过程从宏观结构到微观环节都作精心布局,使教学动态系统可控和谐,使教学过程层次分明,起伏跌宕。环环紧扣,师生情感得到充分交流,让学生在优美的教学环境中受到教育。

第五篇:谈谈学具在小学数学教学中的作用

谈谈学具在小学数学教学中的作用

小学生从认数、读数、写数到学习计算,应用题解答以及认识几何图形,都离不开具体形象的实物。在教学中,教师应用教具或电教进行教学,能使教学直观形象,但还是有局限性——学生只能当观众。如果在教学中,教师适时、适量、适度地引导学生操作学具,让学生动手、动脑、动口,多种感官协同参与认识过程,不仅可以激发学生学习兴趣,而且有利于学生新知识的获取和掌握。下面就结合自己在教学中引导学生操作学具,谈谈一些体会:

一、操作学具有利于学生对几何形体的认识。

由于小学生的年龄特点和认知规律,教师在讲授几何概念知识时,要善于让学生多操作学具,从直观感知中,认识事物的特征,从而获得知识。例 如,教学“长方形和正方形的认识”这一节课时,为了让学生初步掌握长方形和正方形的基本特征,教师应让学生拿出长方形和正方形的学具,数一数长方形和正方形各有几条边?几个角?再让学生用尺子量一量长方形和正方形每条边的长度。通过动手量一量,从中发现长方形每条边的长度有什么特征?对边长度有什么特点?正方形每条边的长度有什么特征?接着再让学生用直角三角板比一比长方形和正方形的每个角是什么角?通过学生亲自动手“数一数”、“量一量”、“比一比”。自己去发现角和边的特点,从而总结出长方形和正方形的特征,归纳出它们有什么不同点和相同点。这种教学方法,不但激发了学生学习的兴趣,使学生爱学、乐学,而且学生自己发现总结出几何形体的特征,就会记忆忧新,知识掌握得更深刻。

二、操作学具有利于学生掌握平面几何图形面积计算公式。

要掌握平面几何图形的面积计算公式,关键让学生理解计算公式的来源。计算公式是在学生已经掌握的知识基础上 成长起来的。因此,教师讲授知识时,应引导学生应用旧知识的迁移,适时、合理的让学生操作学具。从操作学具中去观察、分析,去发现新知识与旧知识的内在联系。从而推导出平面几何图形的面积计算公式。例如,在学习梯形面积计算时,教师应引导学生将两个形状一样、大小完全相等的梯形拼一拼,想一想能拼成已学过的什么图形?学生通过动手、动脑拼图,很快就能发现可以拼成平行四边形。教师在每个学生拼成的平行四边形

基础上,引导学生观察、分析、思考以下两个问题:(1)拼成的平行四边形的底和高与梯形的上、下底和高有什么关系?(2)拼成的平行四边形的面积与梯形的面积有什么关系?在这个操作、观察、思考中,让学生自己发现:梯形的面积=(上底+下底)×高÷2。为了让学生验证梯形面积计算公式的正确性,可以让学生拿出梯形的纸板图形,沿着梯形的中位线剪开,分成两个梯形。接着让学生动手拼一拼,可以拼成已学过的什么图形?学生通过动手剪一剪,拼一拼,发现还是可以拼成一个平行四边形。接着教师引导学生观察、分析、思考:(1)平行四边形的底和高与梯形的上底、下底和高有什么关系?(2)梯形的面积和平行四边形的面积有什么关系?学生通过观察、分析,再次发现“梯形的面积=(上底+下底)×高÷2。使原来推导的梯形面积公式得到证实。在教学中,教师有意识的寓新知识的形成过程于学生操作之中,通过拼一拼,剪一剪,再拼一拼学具,引导学生去观察、分析,去思考梯形面积与拼成的新图形面积之间的内在联系,从而顺利地推导,并验证出梯形面积计算公式。这样教学有利于培养学生观察、比较、分析、概括等能力。

三、操作学具有利于学生理解算理,掌握计算方法。

低年级学生的思维发展离不开具体的学具操作。教师在教学时,要努力多给学生创造动一动学具的机会,帮助学生从操作学具中,去发现算理、理解算理,达到掌握计算方法。 例如:教“9加几”进位加法时,我们除了应用教具学习例题,让学生从例子皮球图中直观地感知到“先凑十”再相加计算比较简便外。为了让学生掌握“凑十法”的应用,应引导学生动手操作。可以让学生拿出预先准备好的9个红圆片,代替盒内的9个皮球,放在桌面的左边,再拿出两个黄圆片代替盒外的两个皮球,摆在桌子的右边。要算9加2得多少?怎样移动圆片使9凑成10?学生通过想一想、动一动,理解了先把小数的2分出1,分出的1和大数的9凑成10,10再加上剩下的1得11的“凑十”计算的方法。由于学生的认知需要经过实践、认识、再实践、再认识的思维发展过程。所以,在学生初步得到感性认识后,还必须借助学具的多次操作活动,才能更好地掌握“凑十法”的算理。因此,学习例题,9+3、9+7得多少时,教师还是要让学生独立动手摆一摆学具,从摆一摆、想一想、说一说中来加深理解先凑十再相加的计算方法。这样教学有利于在掌握“凑十法”的基础上顺利地过渡到抽象地看算式说计算的思考过程。这样教学,不但

培养了学生动手操作能力,也培养了学生语言表达的能力。

四、操作学具有利于学生提高解答实际问题的能力。

由于小学生的思维正处于具体形象思维向抽象逻辑思维过渡的阶段。他们的抽象思维过程自然需要具体形象的支持。教学中适时、适度的操作学具,能发展学生的思维,帮助学生解答较抽象的几何形体的拼、割实际问题。例如,在教学长方体和正方体表面积计算后,有这样一道练习题:“已知两个棱长为3厘米的正方体,拼成一个长方体,这个长方体表面积是多少?”解答这一题目,需要空间想象能力。由于小生的空间想象能力较差,为了引导学生正确理解问题,教师在指导学生练习时,可以让学生拿出两个大小相等的正方体,让他们拼一拼、想一想、说一说拼成的长方体的长、宽、高和原来正方体的棱长有什么关系?学生就不难得出长方体的表面积是(3×2×3+3×2×3+3×3)×2=90(平方厘米)。这时,我们再引导学生从不同的角度分析,又得出长方体的表面积3×2×3×4+3×3×2=90(平方厘米),3×3×6×2—3×3×2=90(平方厘米),3×3×10=90(平方厘米)等算法。接着引导学生对几种算法进行比较,哪一种既简单又合理。通过讨论,学生们都的目的。认识到了3×3×10=90(平方厘米)这种算法是最简单,又合理的。可见在教学中,适时引导学生操作学具,可以帮助学生从不同角度去分析、思考,从中发现事物的特征,寻找到既简单又合理的算法,达到正确解答问题

五、操作学具有助于提高学生的思维能力。

动作与思维密不可分。低年级的学生对新颖的事物特别感兴趣,喜欢 动一动、试一试。所以,在教学中,要向学生提供能突出知识特点的、带有 色彩的直观材料,“投其所好”,让其亲自动手,感知实践。如:教学“有余数除法”时,可组织学生摆彩色小棒。先拿出10根小棒,每4根摆一个正 方形,问可摆几个正方形?还剩几根小棒?并列出相应的除法算式,同时写出剩下的小棒数,然后再让学生分别取出11根至15根小棒,仿此一一进行操作,板书,强化训练,使其程序规范,动作熟练。通过这一动作和感知的协调,促进动作思维不断进行,使学生初步理解了余数的产生和余数的含义,并初步概括出余数的概念。这样引导学生自己从动作中发现、思索、领悟、概括,获得直观的知识,促进了思维的发展。

综上所述,在课堂教学中适时、适度地引导学生操作学具,让学生摆一摆、

拼一拼、量一量、想一想、讲一讲等多种教学手段综合应用,使学生手、眼、口、脑多种感官参与认识活动。这样,不但激发了学生的求知欲和好奇心,而且学生的观察能力、语言表达能力、空间想象能力和逻辑思维能力都能得到训练和加强。这样,学生获取的知识、概念会更清晰,记忆会更牢固。使课堂教学收到事半功倍的效果。实践证明,在课堂教学中,正确适当的操作学具,有利于学生主动获取知识,有利于学生能力的发展。

来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。


谈谈数学美在数学教学中的作用》由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
链接地址:http://www.bsmz.net/gongwen/271944.html