分数乘以整数的意义和计算方法
无棣县碣石山镇小学刘长海
教学目标:
1.分数乘以整数的意义,掌握计算法则,正确计算分数乘以整数的算式题。
2.渗透事物是相互联系、相互转化的辩证唯物主义观点。 教学重点:
分数乘以整数的意义及计算方法。
教学难点:
分数乘以整数的计算法则的推导。
教具准备:多媒体课件。
教学过程:
一:复习
1.口算:
问:怎样计算?(分母不变分子相加)
2.根据题意列出算式:
(1)5个12是多少?
(2)3个14是多少?
列式:
(1)12+12+12+12或12×5
(2)14+14+14或14×3
题中的两个式子哪个简便?(12×5,14×3)
它们各表示什么意思呢?(5个12是多少?3个14是多少?) 能用一句话概括这两个乘法算式的意义吗?(就是求几个相同加数和的简便运算。)
这是整数乘法的意义,它对于分数乘法适用吗?
二:讲授新课
1.出示课题明确学习目标。
2.出示自学题纲,让学生自学课本。
(1)分数乘以整数的意义是什么?与整数乘法的意义相同吗?
(2)分数乘以整数的计算方法是怎样的?它是怎样推导出来的?
(3)分数乘以整数的意义。
例1小新和爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共
吃多少块?(1)读题,找已知条件和问题。(第人吃块,3人一共吃多少块?)
(2)分析,问:块是什么意思?(把一块蛋糕平均分成9分,
取其中2份。)
听回答,老师边重复边电脑演示(三层复式演示)。
把一块蛋糕(出示一个圆)平均分成9份(覆盖平均分的9
份),取其中2份(覆盖2份是红色的)。平均分成9份取其2份。
师:(结合图)说:“那块”是多大?(边说边演示)
师:每人吃一块(出示一块),3人一共吃了多少块?(再翻出两个块的投影。)
问:3个块是多少呢?(边说边翻投影)
平均分9份,取6份
(3)根据图意列出算式。
问:这个加法算式有什么特点?(三个加数相同。)
问:还可以怎么列式?(×3)
问:为什么?(三个加数相同)
问:这个算式你们学过吗?它是什么数乘以什么数?(分数乘以整数。)
师:这就是今天我们要学习的分数乘以整数。(板书课题) 师:分数乘以整数表示什么意思呢?观察上面两个算式,并说出
×3 的意义。(讨论)
(分数乘以整数的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。×3就是求3个是多少。)
3.分数乘以整数的法则。
(1)推导法则。
我们了解了分数乘以整数的意义,你想知道怎样计算吗?
a.导出计算方法。
你会计算吗?看哪些同学不用老师讲解就能依据转化思想把分数乘以整数这个新知识转为已经学过的旧知识来进行计算。(可以互相说互相看。)
如果学生写出这个步骤时,老师继续追问。
问:这道只是3个可以这样写,如果是100个或更多个,那该怎么办呢?
引导学生讨论得出:
又可以转化成什么式子呢?因为分子2+2+2=2×3,分母9=9,所以,可以转化成。
只是为了说明算理,计算时省略不写。(边说边加上虚线框。
b.归纳法则。
通过以上几个式题的计算,想一想分数乘以整数怎样计算呢? 师:比一比,看哪个组的同学总结的语言准确又简练。小组讨论,总结出法则。
分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。(板书)
c.应用法则计算。
计算(做本上,投影反馈)
(约分数位对齐)
讨论,这两种方法哪种简单?为什么?
强调:能约分,要先约分;结果是假分数一定要化成整数或带分数。
(三)巩固练习
投影出示练习题。
(四)回顾整理:
教师引导学生回顾本届所学的内容。
(五)布置作业
自主练习的题目。
第二篇:分数乘整数教学设计分数乘整数教学设计
教学目的:使学生理解分数乘以整数的意义,在理解算理的基础上掌握分数乘以整数的计算法则,并能正确运用“先约分再相乘”的方法进行计算。
教学重点:让学生理解算理,掌握计算法则
教学过程
一、复习。
1.5个12是多少?
用加法算:12+12+12+12+12
用乘法算:12×5
问:12×5算式的意义是什么?被乘数和乘数各表示什么?
2.计算:
问:这两个算式有什么特点?应该怎样计算?
教师总结:整数乘法的意义,就是求几个相同加数的和的简便运算。被乘数表示相同的加数,乘数表示相同的加数的个数。同分母分数加法计算法则是分子相加作分子,分母不变。 通过将算式:改写成乘法算式,引出课题。
二、情境引入新课
1.教师出示例题图示:
例题:人跑一步的距离相当于代数跳一下的。人跑三步的距离是代数跳一下的几分之几?
(1)首先让学生分析题意,试着描述场景图。
(2)学生分组讨论:“人跑一步的距离相当于袋鼠跳一下的”是什么意思?如何理解“相当于”?
师:我们用线段帮助我们理解:画一条线段,表示袋鼠跳一下的距离。“人跑一步的距离相当于袋鼠跳一下的”,就要把袋鼠跳一下的距离即这一条线段看作单位“1”,把这条线段平均分成11份,其中的2份就表示人跑一步的距离。求“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个是多少?(教师在学生讨论的基础上将线段图逐步表示完整。)
(3)如何解决这个问题?
学生独立思考,开展讨论与交流。(基础好的学生可以提出加法和乘法两种解决方法)教师引导学生思考与讨论如何计算。因为分数加法的计算学生已经掌握,重点讨论×3如何计算。
师:我们观察加法算式的特点,3个加数有什么特点?(3个加数相同)我们求3个相同加数的和还可以怎样列式?
引导学生列出乘法算式。得出分数乘整数的计算方法:分母不变,分子与整数相乘的积作分子。
强调:分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数和的简便运算。
(4)让学生自主总结归纳出分数乘整数的计算方法,并用比较简洁的语言表达出来。
2、延伸强化
教师出示例题2:,让学生先计算,再讨论。
问题:乘得的积是不是最简分数?应该怎么办?你是怎样约分的?有没有不同的方法?
教师总结:通过不同约分方法的比较,我们知道先约分再计算的方法比较简便。
教师板演约分的书写格式。(更多请搜索:www.bsmz.netes;3=
×3这个算式表示什么?为什么可以这样计算?教师板书:++=×3=
二、自主探索(一)出示例1 小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?
1.读题,说说块是什么意思?
2.根据已有的知识经验,自己列式计算
三、交流、质疑
(一)学生汇报,并说一说你是怎样想的?
方法1:++===(块)
方法2:×3=++====(块)
(二)比较这两种方法,有什么联系和区别?
联系:两种方法的结果是一样的.
区别:一种方法是加法,另一种方法是乘法.
教师板书:++=×3
(三)为什么可以用乘法计算?
加法表示3个相加,因为加数相同,写成乘法更简便.
(四)×3表示什么?怎样计算?
表示3个的和是多少?
++====,用分子2乘3的积做分子,分母不变.
(五)提示:为计算方便,能约分的要先约分,然后再乘.
四、归纳、概括:
(一)结合=×3=和++=×3=,说一说一个分数乘整数表示什么?
求几个相同加数的和的简便运算.
(二)分数乘整数怎样计算?
用分子和分母相乘的积做分子,分母不变
五、巩固、发展
(一)巩固意义
1.改写算式
+++=()×()
+++++++=()×()
2.只列式不计算:3个是多少?5个是多少?
(二)巩固法则
1.计算(说一说怎样算)
×4×6×21×4×8
思考:为什么先约分再相乘比较简便?
2.应用题
(1)一个正方体的礼品盒,底面积是平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?
(2)美术馆要进行美术展览,有5张画是边长米的正方形的,如果为这几幅画配上镜框,需要木条多少米?
(三)对比练习
1.一条路,每天修千米,4天修多少千米?
2.一条路,每天修全路的,4天修全路的几分之几?
六、课后作业
(一)的3倍是多少?的10倍是多少?
(二)一个正方形的边长是米,它的周长是多少米?
(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?
七、板书设计
分数乘整数
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.
例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?
用加法算:++===(块)
用乘法算:×3=++====(块)
答:3人一共吃了块.
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.
第四篇:人教版六年级数学上册分数乘整数教学设计及反思教学目标:
1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
3、引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
教学重点:使学生理解分数乘整数的意义,掌握计算方法。
教学难点:掌握分数乘整数计算方法。
教学方法与手段:
教具准备:主题图
教学过程:
<一>、创设情境,生成问题
1、出示复习题。
(1)列式并说出算式中的两个因数各表示什么?
5个12是多少?9个11是多少?8个6是多少?
(2)计算:1/6+2/6+3/6=3/10+3/10+3/10=
2、引出课题。
3/10+3/10+3/10=这题我们还可以怎么计算?今天我们就来学习分数乘法。
<二>、探索交流,解决问题
1、利用3/10+3/10+3/10=教学分数乘法。
这道加法算式中,加数各是多少?(都是3/10 )。表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?
(乘法,3/10 ×3)
3/10+3/10 +3/10 =9/10 ,那么 3/10+3/10 +3/10 = 3/10×3,所以 3/10×3= 9/10 。同学们想想看,3/10 ×3=9/10计算过程是怎样的?谁能把它补充完整。
2、出示例1,画出线段图,学生独立列式解答。
(1)引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的 2/11”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。
(2)引导学生根据线段图理解,人跑一步是袋鼠跳一下的2/11 ,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个2/11 是多少?(列式:2/11 ×3 = 6/11)
总结:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。
3、练习:完成“做一做”第2题。
4、教学例2:(1)出示 3/8×6,让学生独立计算。
(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?
(3)学生通过自己的想法来约分:a、先约分再计算;b、先计算得出乘积后约分。
(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。
<三>、巩固应用,内化提高。
1、完成“做一做”的第1、3题。2、练习二第1、2、4题。
<四>、回顾整理,反思提升
谈谈这节课的收获。
板书设计:3/10+3/10+3/10=
乘法:3/10 ×3=
分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变
教学反思:本节教学内容相对简单,落实到位,从学生的练习与作业看出,个别基础差的课后再补习下就好。课上不需要集体讲解。
第五篇:人教新课标六年级上册数学教案分数乘整数1教学设计分数乘整数
教学目标
1. 知识目标:
使学生理解分数乘整数的意义和整数乘法的意义相同,并掌握分数乘整数的计算法则,正确运用法则进行计算。
2. 能力目标:
通过引导学生进行比较、归纳,培养学生迁移类推的能力和初步概括能力。
3. 情感目标:
在探究活动中激发学生学习数学的兴趣。
教学重点
分数乘整数的意义和计算法则。
教学难点:
为了计算简便,能约分的要先约分,然后再相乘。
教学准备
电教(课件)
教学过程
一、回顾旧知,复习铺垫
1.填空。
(1)8+8+8=()×()
(2)5×4=()+()+()+()
(3)5个12是多少?列式为()
乘法的意义是什么?
2.计算。
123333??????666101010
二、引导探索,学习新知
1.揭示课题。
今天开始我们学习“分数乘法”。首先学习“分数乘整数”。
2.分数乘整数的意义。
(1)出示例1。(课件)
(2)11表示什么意义?
(3)11的分数单位是多少?有几个这样的分数单位?
(4)“人走3步的距离是袋鼠跳一下的几分之几?”就是求什么?
(5)3个11相加的和是多少?怎样列式?
222
(6)11+11+11,这3个加数有什么特点?还可以怎样列式比较简便?
(7)11×3表示什么意思?
(8)把11×3和12×5的意义相比较,引导学生归纳本部门分数乘整数的意义与整数乘法的意义相同。
3.分数乘整数的计算法则。(课件)
2222?2?26????1111111111 (1)用加法算:
22222?2?22?36?3??????11111111111111 (2)用乘法算:
(3)引导学生归纳:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 学生试做,强调为了计算简便,能约分的要先约分,然后再乘。
4.尝试练习:做一做第1题。
三、巩固深化,拓展思维
做一做第2、3题。
四、分课小结,提高认识
这节课学习了什么内容?分数乘整数的意义是什么?分数乘整数的计算方法是怎样的?计算时要注意些什么?
五、课堂练习,辅助消化
练习二第1、2、4题。
六、课外补充,拓展延伸
17
1.一种稻谷每千克能出大米20千克,100千克稻谷能出大米多少千克?
2.甲、乙两袋橘子,如果从甲袋中拿出4千克橘子放入乙袋,则两袋橘子一样重。原来甲袋橘子比乙袋橘子重多少千克?
七、作业
练习二第2、4题。
默认推荐访问其他精彩内容:分数乘整数教学
分数乘整数教学反思
分数乘整数教学反思
分数乘整数教学反思
小数乘整数教学设计
来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。