荟聚奇文、博采众长、见贤思齐
当前位置:公文素材库 > 计划总结 > 工作总结 > 初一上数学期末复习总结

初一上数学期末复习总结

网站:公文素材库 | 时间:2019-05-26 16:13:30 | 移动端:初一上数学期末复习总结

初一上数学期末复习总结

同芳学校

1的分数)和分数统称有理数.

初一数学(上)期末复习资料

1.有理数:

(1)凡能写成

qp都是有理数,整数(看作分母为(p,q为整数且p0)形式的数,

注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;

正有理数(2)有理数的分类:①有理数零负有理数整数②有理数负整数分数负分数正整数正分数正整数零负整数正分数负分数(3)自然数0和正整数;a>0a是正数;a<0a是负数;a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0a+b=0a、b互为相反数.(4)相反数的商为-1.(5)相反数的绝对值相等4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(a0)a(a0)a(2)绝对值可表示为:a0(a0)或a;a(a0)a(a0)(3)aa1a0;aa1a0;(4)|a|是重要的非负数,即|a|≥0;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;

(3)两个负数比较,绝对值大的反而小;

(4)数轴上的两个数,右边的数总比左边的数大;

(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准质量的差

6.倒数:

学习热线:8560100285601003地址:市委下农行总行东侧北50米燃气综合办公楼四楼

同芳学校

乘积为1的两个数互为倒数;

注意:0没有倒数;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.等于本身的数汇总:

相反数等于本身的数:0倒数等于本身的数:1,-1绝对值等于本身的数:正数和0

平方等于本身的数:0,1立方等于本身的数:0,1,-1.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。11有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.(简便运算)12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即13.有理数乘方的法则:a0无意义.(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即a2≥0;若a2+|b|=0a=0,b=0;

0.10.01211(4)据规律2底数的小数点移动一位,平方数的小数点移动二位.

10100215.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数

学习热线:8560100285601003地址:市委下农行总行东侧北50米燃气综合办公楼四楼

同芳学校

法叫科学记数法.

16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.

17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:不省过程,不跳步骤。19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.

常用于填空,选择。

整式的加减

1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。2.单项式的系数与次数:单项式中的数字因数,称单项式的系数;

单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.

4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;5.整式单项式多项式.

6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:

去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.

9.整式的加减:一找:(划线);二“+”(务必用+号开始合并)三合:(合并)

10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).

一元一次方程1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.

4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.

6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程

学习热线:8560100285601003地址:市委下农行总行东侧北50米燃气综合办公楼四楼

同芳学校

是一元一次方程.

7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程解法的一般步骤:化简方程----------分数基本性质

去分母----------同乘(不漏乘)最简公分母去括号----------注意符号变化移项----------变号(留下靠前)合并同类项--------合并后符号系数化为1---------除前面10.列一元一次方程解应用题:(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:(1)行程问题:距离=速度时间速度距离时间时间距离速度;工作量工效(2)工程问题:工作量=工效工时工效工作量工时工时;工程问题常用等量关系:先做的+后做的=完成量(3)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;水流速度=(顺水速度-逆水速度)÷2顺水逆水问题常用等量关系:顺水路程=逆水路程(4)商品利润问题:售价=定价几折10,利润率售价成本成本100%;利润问题常用等量关系:售价-进价=利润(5)配套问题:(6)分配问题:多姿多彩的图形

学习热线:8560100285601003地址:市委下农行总行东侧北50米燃气综合办公楼四楼

同芳学校

现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形。1.立体图形与平面图形

长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。长方形、正方形、三角形、圆等都是平面图形。

许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。2.点、线、面、体

几何体也简称体。长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。包围着体的是面。面有平的面和曲的面两种。面和面相交的地方形成线。线和线相交的地方是点。几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。直线、射线、线段

经过两点有一条直线,并且只有一条直线。两点确定一条直线。

点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。

直线桑一点和它一旁的部分叫做射线。

两点的所有连线中,线段最短。简单说成:两点之间,线段最短。角的比较与运算3.角的比较

从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。4.余角和补角

如果两个角的和等于90(直角),就说这两个角互为余角。如果两个角的和等于180(平角),就说这两个角互为补角。

学习热线:8560100285601003地址:市委下农行总行东侧北50米燃气综合办公楼四楼

同芳学校

等角的补角相等。等角的余角相等。

学习热线:8560100285601003地址:市委下农行总行东侧北50米燃气综合办公楼四楼

友情提示:本文中关于《初一上数学期末复习总结》给出的范例仅供您参考拓展思维使用,初一上数学期末复习总结:该篇文章建议您自主创作。

来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。


初一上数学期末复习总结》由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
链接地址:http://www.bsmz.net/gongwen/407473.html
相关文章