荟聚奇文、博采众长、见贤思齐
当前位置:公文素材库 > 计划总结 > 工作总结 > 高一数学必修1第一章知识点总结txt

高一数学必修1第一章知识点总结txt

网站:公文素材库 | 时间:2019-05-26 20:29:36 | 移动端:高一数学必修1第一章知识点总结txt

高一数学必修1第一章知识点总结txt

高一数学必修1第一章知识点总结

一、集合有关概念1.集合的含义

2.集合的中元素的三个特性:(1)元素的确定性,(2)元素的互异性,(3)元素的无序性,

3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。注意:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集N*或N+整数集Z有理数集Q实数集R

1)列举法:{a,b,c……}

R|x-32)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x>2},{x|x-3>2}

3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:

(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

二、集合间的基本关系1.“包含”关系子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B(5≥5,且5≤5,则5=5)

实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”A即:①任何一个集合是它本身的子集。A

B那就说集合A是集合B的真子集,记作AB(或BA)B,且A②真子集:如果A

CC,那么AB,B③如果A

B④如果AA那么A=B同时B

3.不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。有n个元素的集合,含有2n个子集,2n-1个真子集三、集合的运算

运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作A交B),即AB={x|xA,且xB}.

由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作A并B),即AB={x|xA,或xB}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作,即CSA=韦恩图

示性

质AA=AAΦ=ΦAB=BAABAABBAA=AAΦ=AAB=BAABAABB

(CuA)(CuB)=Cu(AB)

(CuA)(CuB)=Cu(AB)A(CuA)=UA(CuA)=Φ.

例题:

1.下列四组对象,能构成集合的是()A某班所有高个子的学生B著名的艺术家C一切很大的书D倒数等于它自身的实数

2.集合{a,b,c}的真子集共有个

3.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},则M与N的关系是.4.设集合A=,B=,若AB,则的取值范围是

5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,

两种实验都做错得有4人,则这两种实验都做对的有人。6.用描述法表示图中阴影部分的点(含边界上的点)组成的集合M=.

7.已知集合A={x|x2+2x-8=0},B={x|x2-5x+6=0},C={x|x2-mx+m2-19=0},若B∩C≠Φ,A∩C=Φ,求m的值

二、函数的有关概念

1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.注意:

1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;

(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;

(4)指数、对数式的底必须大于零且不等于1.

(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,

(7)实际问题中的函数的定义域还要保证实际问题有意义.

相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)(见课本21页相关例2)2.值域:先考虑其定义域(1)观察法(2)配方法(3)代换法

3.函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.(2)画法

A、描点法:B、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间

(3)区间的数轴表示.5.映射

一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作f:A→B6.分段函数

(1)在定义域的不同部分上有不同的解析表达式的函数。(2)各部分的自变量的取值情况.

(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.补充:复合函数

如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。二.函数的性质

1.函数的单调性(局部性质)(1)增函数

设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”

注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.

8.函数的奇偶性(整体性质)(1)偶函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.

(3)具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:

○1首先确定函数的定义域,并判断其是否关于原点对称;○2确定f(-x)与f(x)的关系;

○3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;(3)利用定理,或借助函数的图象判定.9、函数的解析表达式

(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:1)凑配法

2)待定系数法3)换元法4)消参法

10.函数最大(小)值(定义见课本p36页)

○1利用二次函数的性质(配方法)求函数的最大(小)值○2利用图象求函数的最大(小)值

○3利用函数单调性的判断函数的最大(小)值:

如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);

如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);例题:

1.求下列函数的定义域:⑴⑵

2.设函数的定义域为,则函数的定义域为__3.若函数的定义域为,则函数的定义域是4.函数,若,则=

6.已知函数,求函数,的解析式

7.已知函数满足,则=。

8.设是R上的奇函数,且当时,,则当时=在R上的解析式为9.求下列函数的单调区间:⑴(2)

10.判断函数的单调性并证明你的结论.11.设函数判断它的奇偶性并且求证:

扩展阅读:高中数学必修1知识点总结:第一章_集合与函数概念

高中数学必修1知识点总结

第一章集合与函数概念

【1.1.1】集合的含义与表示

(1)集合的概念

集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法

N表示自然数集,N

或N表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.

(3)集合与元素间的关系

对象a与集合M的关系是aM,或者aM,两者必居其一.(4)集合的表示法

①自然语言法:用文字叙述的形式来描述集合.

②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x|x具有的性质},其中x为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类

①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集().

【1.1.2】集合间的基本关系

(6)子集、真子集、集合相等

名称记号意义(1)AAA中的任一元素都属于B(2)性质示意图AB子集(或BA)ABA(3)若AB且BC,则AC(4)若AB且BA,则AB(1)A(A为非空子集)A(B)BA或真子集(或BA)AB,且B中至少有一元素不属于ABA(2)若AB且BC,则AC集合相等A中的任一元素都属AB于B,B中的任一元素都属于A(1)AB(2)BAA(B)(7)已知集合真子集.

A有n(n1)个元素,则它有2n个子集,它有2n1个真子集,它有2n1个非空子集,它有2n2非空

【1.1.3】集合的基本运算

(8)交集、并集、补集名称记号意义性质示意图交集AB{x|xA,且xB}AAA(2)A(3)ABAABB(1)AB

并集AB{x|xA,或xB}AAA(2)AA(3)ABAABB(1)1A(2A(UA)UUA)AB补集UA{x|xU,且xA}痧U(AB)(UA)(UB)痧U(AB)(UA)(UB)【补充知识】含绝对值的不等式与一元二次不等式的解法

(1)含绝对值的不等式的解法

不等式解集|x|a(a0){x|axa}|x|a(a0)把x|xa或xa}axb看成一个整体,化成|x|a,|axb|c,|axb|c(c0)|x|a(a0)型不等式来求解(2)一元二次不等式的解法

判别式b4ac二次函数201*yax2bxc(a0)的图象O一元二次方程ax2bxc0(a0)的根bb24acx1,22a(其中x1x1x2b2a无实根x2){x|xax2bxc0(a0)的解集{x|xx1或xx2}b}2aRax2bxc0(a0)的解集{x|x1xx2}

〖1.2〗函数及其表示【1.2.1】函数的概念

(1)函数的概念

①设的数记作

A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定

f(x)和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合

A到B的一个函数,

f:AB.

②函数的三要素:定义域、值域和对应法则.

③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法

①设a,b是两个实数,且ab,满足axb的实数x的集合叫做闭区间,记做[a,b];满足axb的实数x的集合叫做开区间,记做(a,b);满足axb,b或ax的实数x的集合叫做半开半闭区间,分别记做[a,b),

(a,b];满足xa,xa,xb,xb的实数x的集合分别记做[a,),(a,),(,b],(,b).

注意:对于集合{x|axb}与区间(a,b),前者a可以大于或等于b,而后者必须

ab.

(3)求函数的定义域时,一般遵循以下原则:

①②③

f(x)是整式时,定义域是全体实数.

f(x)是分式函数时,定义域是使分母不为零的一切实数.

f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合.

④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤

ytanx中,xk2(kZ).

⑥零(负)指数幂的底数不能为零.⑦若

f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.

f(x)的定义域为[a,b],其复合函数f[g(x)]的定义域应由不等

⑧对于求复合函数定义域问题,一般步骤是:若已知式ag(x)b解出.

⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值

求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:

①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.

②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数

yf(x)可以化成一个系数含有y的关于x的二次方程a(y)x2b(y)xc(y)0,则在

a(y)0时,由于x,y为实数,故必须有b2(y)4a(y)c(y)0,从而确定函数的值域或最值.

④不等式法:利用基本不等式确定函数的值域或最值.

⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问

题.

⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.

【1.2.2】函数的表示法

(5)函数的表示方法

表示函数的方法,常用的有解析法、列表法、图象法三种.

解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象

法:就是用图象表示两个变量之间的对应关系.(6)映射的概念

①设

A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它

A,B以及A到B的对应法则f)叫做集合A到B的映射,记作f:AB.

对应,那么这样的对应(包括集合

②给定一个集合

A到集合B的映射,且aA,bB.如果元素a和元素b对应,那么我们把元素b叫做元素a的象,

元素a叫做元素b的原象.

〖1.3〗函数的基本性质

【1.3.1】单调性与最大(小)值

(1)函数的单调性

①定义及判定方法

函数的性质定义如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x

(1)利用定义如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当xf(x),那么就说12...........f(x)在这个区间上是减函数....yf(x)1y=f(X)f(x)2(2)利用已知函数的单调性(3)利用函数图象(在某个区间图x2ox1x象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数

yf[g(x)],令ug(x),若yf(u)为增,ug(x)为增,则yf[g(x)]为增;若

yf(u)为减,ug(x)为减,则yf[g(x)]为增;若yf(u)为增,ug(x)为减,则yf[g(x)]为

减;若

yf(u)为减,ug(x)为增,则yf[g(x)]为减.

y(2)打“√”函数

af(x)x(a0)的图象与性质

xf(x)分别在(,a]、[a,)上为增函数,分别在[a,0)、(0,a]上为减函数.(3)最大(小)值定义①一般地,设函数

yf(x)的定义域为I,如果存在实数M满足:(1)对于任意的xI,都有oxf(x)M;

(2)存在x0I,使得

f(x0)M.那么,我们称M是函数

f(x)的最大值,记fmax(x)M.

yf(x)的定义域为I,如果存在实数m满足:(1)对于任意的xI,都有

(2)f(x)m;

②一般地,设函数

存在x0I,使得

f(x0)m.那么,我们称m是函数f(x)的最小值,记作fmax(x)m.

【1.3.2】奇偶性

(4)函数的奇偶性

①定义及判定方法

函数的性质定义如果对于函数f(x)定义域内任意一个x,都有.f(-x)=-......f(x),那么函数f(x)叫做奇函......数..函数的奇偶性如果对于函数f(x)定义域内任意一个x,都有.f(-x)=f(x),.........那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y轴对称)②若函数

图象判定方法(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)f(x)为奇函数,且在x0处有定义,则f(0)0.

y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.

③奇函数在

④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.

〖补充知识〗函数的图象

(1)作图

利用描点法作图:

①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.利用基本函数图象的变换作图:

要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换

h0,左移h个单位k0,上移k个单位yf(x)yf(xh)yf(x)yf(x)k

h0,右移|h|个单位k0,下移|k|个单位②伸缩变换

01,伸yf(x)yf(x)

1,缩0A1,缩yf(x)yAf(x)

A1,伸③对称变换

y轴x轴yf(x)yf(x)yf(x)yf(x)

直线yx原点yf(x)yf(x)yf(x)yf1(x)去掉y轴左边图象yf(x)yf(|x|)

保留y轴右边图象,并作其关于y轴对称图象

保留x轴上方图象yf(x)y|f(x)|

将x轴下方图象翻折上去(2)识图

对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图

函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重

要工具.要重视数形结合解题的思想方法.

友情提示:本文中关于《高一数学必修1第一章知识点总结txt》给出的范例仅供您参考拓展思维使用,高一数学必修1第一章知识点总结txt:该篇文章建议您自主创作。

来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。


高一数学必修1第一章知识点总结txt》由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
链接地址:http://www.bsmz.net/gongwen/441273.html