荟聚奇文、博采众长、见贤思齐
当前位置:公文素材库 > 计划总结 > 工作总结 > 初一数学下册要点总结

初一数学下册要点总结

网站:公文素材库 | 时间:2019-05-26 20:30:53 | 移动端:初一数学下册要点总结

初一数学下册要点总结

七年级下册要点总结

第一章整式的运算

一、单项式、单项式的次数:

只含有数字与字母的积的代数式叫做单项式。单独的一个数或一个字母也是单项式。一个单项式中,所有字母的指数的和叫做这个单项式的次数。二、多项式

1、多项式、多项式的次数、项

几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。三、整式:单项式和多项式统称为整式。四、整式的加减法:

整式加减法的一般步骤:(1)去括号;(2)合并同类项。五、幂的运算性质:1、同底数幂的乘法:a

2、幂的乘方:3、积的乘方:

4、同底数幂的除法:

六、零指数幂和负整数指数幂:1、零指数幂:2、负整数指数幂:七、整式的乘除法:

1、单项式乘以单项式:

法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。

2、单项式乘以多项式:

法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

3、多项式乘以多项式:

多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

4、单项式除以单项式:

单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

5、多项式除以单项式:

多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。八、整式乘法公式:

1、平方差公式:2、完全平方公式:

第二章平行线与相交线

一、余角和补角:

1、余角:

定义:如果两个角的和是直角,那么称这两个角互为余角。性质:同角或等角的余角相等。2、补角:

定义:如果两个角的和是平角,那么称这两个角互为补角。

性质:同角或等角的补角相等。二、对顶角:

我们把两条直线相交所构成的四个角中,有公共顶点且角的两边互为反向延长线的两个角叫做对顶角。

对顶角的性质:对顶角相等。三、同位角、内错角、同旁内角:

直线AB,CD与EF相交(或者说两条直线AB,CD被第三条直线EF所截),构成八个角。其中∠1与∠5这两个角分别在AB,CD的上方,并且在EF的同侧,像这样位置相同的一对角叫做同位角;∠3与∠5这两个角都在AB,CD之间,并且在EF的异侧,像这样位置的两个角叫做内错角;∠3与∠6在直线AB,CD之间,并侧在EF的同侧,像这样位置的两个角叫做同旁内角。

四、平行线的判定:

1、两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。

2、两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。

3、两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。

补充平行线的判定方法:

(1)平行于同一条直线的两直线平行。

(2)在同一平面内,垂直于同一条直线的两直线平行。(3)平行线的定义。五、平行线的性质:

(1)两直线平行,同位角相等。(2)两直线平行,内错角相等。(3)两直线平行,同旁内角互补。六、尺规作图:

1、作一条线段等于已知线段。2、作一个角等于已知角。

第三章生活中的数据

一、科学记数法:

一般地,一个绝对值较小的数可以表示成a10的形式,其中1a10,n是负整数。

二、近似数和有效数字:1、近似数:

利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。

2、有效数字:对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都

2

n

叫做这个近似数的有效数字。三、形象统计图:

第四章概率

一、事件发生的可能性;

人们通常用1(或100)来表示必然事件发生的可能性,用0来表示不可能事件发生的可能性。二、游戏是否公平:

游戏对双方公平是指双方获胜的可能性相同。三、摸到红球的概率:1、概率的意义

P(摸到红球=

摸到红球可能出现的结果数

摸出一球可能出现的结果数2、确定事件和不确定事件的概率:

(1)必然事件发生的概率为1记作P(必然事件)=1(2)不可能事件发生的概率为0,P(不可能事件)=0(3)如果A为不确定事件,那么0

(2)三角形按角分类:

直角三角形(有一个角为直角的三角形)

三角形锐角三角形(三个角都是锐角的三角形)斜三角形

钝角三角形(有一个角为钝角的三角形)

把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。

7、三角形的三种重要线段:(1)三角形的角平分线:

定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

性质:三角形的三条角平分线交于一点。交点在三角形的内部。(2)三角形的中线:

定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。性质:三角形的三条中线交于一点,交点在三角形的内部。(3)三角形的高线:

定义:从三角形一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

性质:三角形的三条高所在的直线交于一点。锐角三角形的三条高线的交点在它的内部;直角三角形的三条高线的交点是它的斜边的中点;钝角三角形的三条高所在的直线的交点在它的外部;

8、三角形的面积:

三角形的面积=

1×底×高2二、全等图形:

定义:能够完全重合的两个图形叫做全等图形。性质:全等图形的形状和大小都相同。三、全等三角形

1、全等三角形及有关概念:

能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

2、全等三角形的表示:

全等用符号“≌”表示,读作“全等于”。如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。3、全等三角形的性质:全等三角形的对应边相等,对应角相等。4、三角形全等的判定:

(1)边边边:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。

(2)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS”)(4)边角边:两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)直角三角形全等的判定:

对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)

第六章变量之间的关系

1、变量、自变量、因变量:2、函数的三种表示法:

(1)关系式法(2)列表法

(3)图像法

第七章生活中的轴对称

一、轴对称

1、轴对称图形:

如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

2、轴对称:

对于两个图形,如果沿一条直线对折后,它们能够完全重合,那么称这两个图形成轴对称,这条直线就是对称轴。

3、性质:

(1)对应点所连的线段被对称轴垂直平分。(2)对应线段相等,对应角相等。二、角平分线的性质:

角平分线上的点到这个角的两边的距离相等。三、线段的垂直平分线(简称中垂线):

定义:垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。性质:线段垂直平分线上的点到这条线段两个端点的距离相等。四、等腰三角形

1、等腰三角形:有两条边相等的三角形叫做等腰三角形。2、等腰三角形的性质:

(1)等腰三角形的两个底角相等

(2)等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),

(3)等腰三角形是轴对称图形,等腰三角形顶角的平分线、底边上的中线、底边上的高它们所在的直线都是等腰三角形的对称轴。

3、等腰三角形的判定:

(1)有两条边相等的三角形是等腰三角形。

(2)如果一个三角形有两个角相等,那么它们所对的边也相等五、等边三角形:

1、等边三角形:三边都相等的三角形叫做等边三角形。2、等边三角形的性质:

(1)具有等腰三角形的所有性质。

(2)等边三角形的各个角都相等,并且每个角都等于60°。3、等边三角形的判定

(1)三边都相等的三角形是等边三角形。(2):三个角都相等的三角形是等边三角形(3):有一个角是60°的等腰三角形是等边三角形。

扩展阅读:初一下册数学知识点汇总

第一章整式的运算知识点汇总

一、整式

单项式和多项式统称整式。

1、单项式

a)由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。b)单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前

面的性质符号,如果一个单项式只是字母的积,并非没有系数,系数为1或-1。c)一个单项式中,所有字母的指数和叫做这个单项式的次数(注意:常数项的单

项式次数为0)

2、多项式

a)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。其中,

不含字母的项叫做常数项。一个多项式中,次数最高项的次数,叫做这个多项式的次数.

b)单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。多项

式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数。多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.

二、整式的加减

a)整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.

b)括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,

这个数与括号内各项都要相乘。

三、同底数幂的乘法

1、同底数幂的乘法法则:

amanamn(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要

注意以下几点:

a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体

的数字式字母,也可以是一个单项或多项式;b)指数是1时,不要误以为没有指数;c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可

以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;d)当三个或三个以上同底数幂相乘时,法则可推广为amanapamnp(其中m、

n、p均为整数);

e)公式还可以逆用:amnaman(m、n均为整数)

四、幂的乘方与积的乘方

a)幂的乘方法则:(am)namn(m,n都是整数数)是幂的乘法法则为基础推导出来

的,但两者不能混淆。

b)(am)n(an)mamn(m,n都为整数)。

c)底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法

则化成同底,如将(-a)3化成-a3

an(当n为偶数时),一般地,(a)na(当n为奇数时).nd)底数有时形式不同,但可以化成相同。

e)要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、

b均不为零)。

f)积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,

即(ab)nanbn(n为正整数)。g)幂的乘方与积乘方法则均可逆向运用。

五、同底数幂的除法

a)同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即amanamn(a≠0).

b)在应用时需要注意以下几点:

1)法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则

中a≠0。

2)任何不等于0的数的0次幂等于1,即a01(a0),如1001,(-2.50=1),

则00无意义。

c)任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即

1app(a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一

a11(2)3定是正的,当a六、整式的乘法

1、单项式乘法法则:

单项式相乘,它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

单项式乘法法则在运用时要注意以下几点:

a)积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错

误的是,将系数相乘与指数相加混淆;b)相同字母相乘,运用同底数幂的乘法法则;

c)只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;d)单项式乘法法则对于三个以上的单项式相乘同样适用;e)单项式乘以单项式,结果仍是一个单项式。2、单项式与多项式相乘法则:

单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

单项式与多项式相乘时要注意以下几点:

a)单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;b)运算时要注意积的符号,多项式的每一项都包括它前面的符号;c)在混合运算时,要注意运算顺序。3、多项式与多项式相乘法则

多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项相乘,再把所得的积相加。

多项式与多项式相乘时要注意以下几点:

a)多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积

的项数应等于原两个多项式项数的积;b)多项式相乘的结果应注意合并同类项;

c)对含有同一个字母的一次项系数是1的两个一次二项式相乘

(xa)(xb)x2(ab)xab,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到

(mxa)(nxb)mnx2(mbna)xab

七.平方差公式

1、平方差公式:

两数和与这两数差的积,等于它们的平方差,即(ab)(ab)a2b2。

其结构特征是:

a)公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;b)公式右边是两项的平方差,即相同项的平方与相反项的平方之差。

八、完全平方公式

1、完全平方公式:

两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即

(ab)2a22abb2;

口诀:首平方,尾平方,2倍乘积在中央;2、结构特征:

a)公式左边是二项式的完全平方;

b)公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2

倍。

c)在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现

(ab)2a2b2这样的错误。

九、整式的除法

1、单项式除法单项式

单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;2、多项式除以单项式

多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。

第二章平行线与相交线知识点汇总

一、台球桌面上的角

1、互为余角和互为补角的有关概念与性质

a)如果两个角的和为90°(或直角),那么这两个角互为余角;b)如果两个角的和为180°(或平角),那么这两个角互为补角;

注意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系。

c)它们的主要性质:同角或等角的余角相等;d)同角或等角的补角相等。

二、探索直线平行的条件

1、两条直线互相平行的条件即两条直线互相平行的判定定理共有三条:

a)同位角相等,两直线平行;b)内错角相等,两直线平行;c)同旁内角互补,两直线平行。

三、平行线的特征

1、平行线的特征即平行线的性质定理,共有三条:

a)两直线平行,同位角相等;b)两直线平行,内错角相等;c)两直线平行,同旁内角互补。

四、用尺规作线段和角

1、关于尺规作图

尺规作图是指只用圆规和没有刻度的直尺来作图。2、关于尺规的功能

a)直尺的功能是:在两点间连接一条线段;将线段向两方向延长。

b)圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为

圆心,任意长度为半径画一段弧。

第三章生活中的数据知识点

一、科学记数法:

对任意一个正数可能写成a×10n的形式,其中1≤a<10,n是整数,这种记数的方法称为科学记数法。

二、近似数和有效数字:

1、近似数

利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位;2、有效数字

对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。3、统计工作包括:

a)b)c)d)e)

设定目标;收集数据;整理数据;

表达与描述数据;分析结果。第四章概率知识点

1、随机事件发生与不发生的可能性不总是各占一半,都为50%。

2、现实生活中存在着大量的不确定事件,而概率正是研究不确定事件的一门学科。3、了解必然事件和不可能事件发生的概率。

必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0

友情提示:本文中关于《初一数学下册要点总结》给出的范例仅供您参考拓展思维使用,初一数学下册要点总结:该篇文章建议您自主创作。

来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。


初一数学下册要点总结》由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
链接地址:http://www.bsmz.net/gongwen/441435.html
相关文章