荟聚奇文、博采众长、见贤思齐
当前位置:公文素材库 > 计划总结 > 工作总结 > 【人教版】初中数学九年级知识点总结:24圆

【人教版】初中数学九年级知识点总结:24圆

网站:公文素材库 | 时间:2019-05-26 20:35:33 | 移动端:【人教版】初中数学九年级知识点总结:24圆

【人教版】初中数学九年级知识点总结:24圆

【人教版】初中数学九年级知识点总结:24圆

【编者按】圆是初中数学的重要内容,也是初中阶段考试的重点和难点,多以大题、综合题、压轴题的形式出现,因此对于这部分内容同学们应引起格外的注意。本章的学习是高中的数学学习,尤其是圆锥曲线的学习的基础性工程.一、目标与要求

1.了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、弦之间的相等关系的定理,探索并理解圆周角和圆心角的关系定理。

2.探索并理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念,探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线。3.进一步认识和理解正多边形和圆的关系和正多边的有关计算。

4.熟练掌握弧长和扇形面积公式及其它们的应用;理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算。二、知识框架

三、重点

1.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧及其运用.2.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等及其运用.3.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半

及其运用.

4.半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径及其运用.5.不在同一直线上的三个点确定一个圆.

6.直线L和⊙O相交dr及其运用.7.圆的切线垂直于过切点的半径及其运用.

8.经过半径的外端并且垂直于这条半径的直线是圆的切线并利用它解决一些具体问题.9.从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角及其运用.

10.两圆的位置关系:d与r1和r2之间的关系:外离d>r1+r2;外切d=r1+r2;相交│r2-r1│

12.圆锥侧面展开图的理解.五、知识点、概念总结

1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。

2.圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。以下图为例:①连接圆上任意两点的线段叫做弦,如图线段AC,AB;②经过圆心的弦叫做直径,如图,线段AB;

③圆上任意两点间的部分叫做圆弧,简称弧,“以A、C为端点的弧记作,读作“圆AC”

叫做劣弧.弧或“弧AC”.大于半圆的弧小于半圆的弧AC”ABC叫做优弧,AC或BCBOAC

3.圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

4.内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。以下图为例O为外接圆的圆心,即外心

5.扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。6.圆锥侧面展开图是一个扇形。这个扇形的半径称为圆锥的母线。

7.圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),

P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。8.过不在同一条直线上的三点作圆的做法:

作法图示1.连结AB、BC2.分别作AB、BC的垂直平分线DE和FG,DE和FG相交于点O3.以O为圆心,OA为半径作圆⊙O就是所要求作的圆9.直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

直线和圆的三种位置关系,如下图:

10.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r。

两圆之间的五种位置关系,如下图:

11.切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。12.切线的性质:

(1)经过切点垂直于这条半径的直线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。

13.垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。14.有关定理:

平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.

在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.15.圆的计算公式(1)圆的周长C=2πr=πd(2)圆的面积S=πr^2;(3)扇形弧长l=nπr/18016.扇形面积S=π(R^2-r^2)

17.圆锥的侧面展开图是一个扇形,如图,设圆锥的母线长为l,底面圆的半径为r,那么这个圆锥的侧面展开图中扇形的半径即为母线长l,扇形的弧长即为底面圆的周长2πr,根据扇形面积公式可知S=

12πrl=πrl.因此圆锥的侧面积为S侧=πrl.

(参考教材:初中数学九年级人教版)

扩展阅读:【人教版】初中数学九年级知识点总结:24圆

【人教版】初中数学九年级知识点总结:24圆

一.知识框架

二.知识概念

1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。

2.圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。3.圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

4.内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。5.扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。6.圆锥侧面展开图是一个扇形。这个扇形的半径称为圆锥的母线。

7.圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。

8.直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共

点叫做切点。

9.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r。10.切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。11.切线的性质:

(1)经过切点垂直于这条半径的直线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。

12.垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。13.有关定理:

平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.

在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.14.圆的计算公式(1)圆的周长C=2πr=πd(2)圆的面积S=πr^2;(3)扇形弧长l=nπr/18015.扇形面积S=π(R^2-r^2)16.圆锥侧面积S=πrl

(参考教材:初中数学九年级人教版)

友情提示:本文中关于《【人教版】初中数学九年级知识点总结:24圆》给出的范例仅供您参考拓展思维使用,【人教版】初中数学九年级知识点总结:24圆:该篇文章建议您自主创作。

来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。


【人教版】初中数学九年级知识点总结:24圆》由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
链接地址:http://www.bsmz.net/gongwen/442010.html