高中物理必修2知识点总结
高中物理必修2知识点总结
章节1、机械功具体内容①机械功的含义②机械功的计算①机械功原理②做功和能的转化主要相关公式▲功WFscos▲功的原理2、功和能一功和功率W动W阻W有用W额外W输入W输出W损失3、功率①功率的含义②功率与力、速度的关系▲功率PPFvWt①功率与机械效率②机械的使用▲机械效率W有用W总P有用P总4、人与机械1、动能的改变①动能②恒力做功与动能改变的关系(实验③动能定理①重力势能②重力做功与重力势能的改变③弹性势能的改变12mv21212▲动能定理Fsmv2mv122▲动能Ek▲重力势能Epmgh二能▲重力做功2、势能的改变的WGEp1Ep2Ep转化①机械能的转化和守恒的实验▲只有重力作用下,机械能守恒与121探索守mv2mgh2mv12mgh13、能量守恒定②机械能守恒定律22恒律③能量守恒定律4、能源与可持续发展
①能量转化和转移的方向性②能源开发与可持续发展
1、运动的合成①运动的独立性②运动合成与分解的方法与分解①竖直下抛运动②竖直上抛运动▲竖直下抛vtv0gtsv0t▲竖直上抛12gt22、竖直方向上的抛体运动三抛体运动3、平抛运动1vtv0gtsv0tgt222v0v0thg2g①什么是平抛运动②平抛运动的规律①斜抛运动的轨迹②斜抛运动物体的射高和射程▲抛出点坐标原点,任意时刻位置xv0ty12gt2▲斜抛初速度v04、斜抛运动v0xv0cosv0yv0sin①线速度sv▲线速度②角速度t③周期、频率和转速④线速度、角速度、周期的关系▲角速度1、匀速圆周运动快慢的描述t▲周期与频率f▲v1T四①向心力及其方向匀②向心力的大小速③向心加速度圆2、向心力与向周心加速度运动3、向心力的实②竖直平面内的圆周运动实例例分析分析①转弯时的向心力实例分析2r2TT2v2▲向心力FmrFmr▲向心加速度v2ar或ar24、离心运动
①认识离心运动②离心机械③离心运动的危害及其防止2
1、万有引力定①行星运动的规律五律及其引力常②万有引力定律③引力常量的测定及其意义量的测定万①人造文星上天有②预测未知天体引力2、万有引力定定律的应用律及其①古希腊人的探索应3、人类对太空②文艺复兴的撞击用的不懈追求③牛顿的大综合④对太空的探索▲万有引力定律FGm1m22r▲第一宇宙速度vGm7.9km/sr▲第二宇宙速度11.2km/s▲第三宇宙速度16.7km/s六相对论与量子论初步①高速世界的两个基本原理②时间延缓效应③长度缩短效应④质速关系⑤质能关系⑥时空弯曲▲相对论时空观tt1vc221、高速世界v2▲长度缩短效应ll12c▲质速关系mm012vc22▲质能关系Emc2、量子世界1、“紫外灾难”2、不连续的能量3、物质的波粒二象性▲量子的能量Eh
201*-5-21
扩展阅读:高中物理必修2知识点详细归纳
第四章曲线运动
第一模块:曲线运动、运动的合成和分解
『夯实基础知识』■考点一、曲线运动
1、定义:运动轨迹为曲线的运动。2、物体做曲线运动的方向:
做曲线运动的物体,速度方向始终在轨迹的切线方向上,即某一点的瞬时速度的方向,就是通过该点的曲线的切线方向。3、曲线运动的性质
由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。
由于曲线运动速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的加速度必不为零,所受到的合外力必不为零。4、物体做曲线运动的条件(1)物体做一般曲线运动的条件
物体所受合外力(加速度)的方向与物体的速度方向不在一条直线上。(2)物体做平抛运动的条件
物体只受重力,初速度方向为水平方向。
可推广为物体做类平抛运动的条件:物体受到的恒力方向与物体的初速度方向垂直。(3)物体做圆周运动的条件
物体受到的合外力大小不变,方向始终垂直于物体的速度方向,且合外力方向始终在同一个平面内(即在物体圆周运动的轨道平面内)
总之,做曲线运动的物体所受的合外力一定指向曲线的凹侧。5、分类
⑴匀变速曲线运动:物体在恒力作用下所做的曲线运动,如平抛运动。
⑵非匀变速曲线运动:物体在变力(大小变、方向变或两者均变)作用下所做的曲线运动,如圆周运动。
■考点二、运动的合成与分解
1、运动的合成:从已知的分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成,由于它们都是矢量,所以遵循平行四边形定则。运动合成重点是判断合运动和分运动,一般地,物体的实际运动就是合运动。
2、运动的分解:求一个已知运动的分运动,叫运动的分解,解题时应按实际“效果”分解,或正交分解。
3、合运动与分运动的关系:
⑴运动的等效性(合运动和分运动是等效替代关系,不能并存);⑵等时性:合运动所需时间和对应的每个分运动时间相等
⑶独立性:一个物体可以同时参与几个不同的分运动,物体在任何一个方向的运动,都按其本身的规律进行,不会因为其它方向的运动是否存在而受到影响。
⑷运动的矢量性(加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则。)4、运动的性质和轨迹
⑴物体运动的性质由加速度决定(加速度为零时物体静止或做匀速运动;加速度恒定时物体做匀变速运动;加速度变化时物体做变加速运动)。⑵物体运动的轨迹(直线还是曲线)则由物体的速度和加速度的方向关系决定(速度与加速度方向在同一条直线上时物体做直线运动;速度和加速度方向成角度时物体做曲线运动)。常见的类型有:
(1)a=0:匀速直线运动或静止。(2)a恒定:性质为匀变速运动,分为:①v、a同向,匀加速直线运动;②v、a反向,匀减速直线运动;
③v、a成角度,匀变速曲线运动(轨迹在v、a之间,和速度v的方向相切,方向逐渐向a的方向接近,但不可能达到。)(3)a变化:性质为变加速运动。如简谐运动,加速度大小、方向都随时间变化。具体如:
①两个匀速直线运动的合运动一定是匀速直线运动。
②一个匀速直线运动和一个匀变速直线运动的合运动仍然是匀变速运动,当两者共线时为匀变速直线运动,不共线时为匀变速曲线运动。
③两个匀变速直线运动的合运动一定是匀变速运动,若合初速度方向与合加速度方向在同一条直线上时,则是直线运动,若合初速度方向与合加速度方向不在一条直线上时,则是曲线运动。
第二模块:平抛运动
『夯实基础知识』平抛运动
1、定义:平抛运动是指物体只在重力作用下,从水平初速度开始的运动。2、条件:
a、只受重力;b、初速度与重力垂直.
3、运动性质:尽管其速度大小和方向时刻在改变,但其运动的加速度却恒为重力加速度g,因而平抛运动是一个匀变速曲线运动。ag
4、研究平抛运动的方法:通常,可以把平抛运动看作为两个分运动的合动动:一个是水平方向(垂直于恒力方向)的匀速直线运动,一个是竖直方向(沿着恒力方向)的匀加速直线运动。水平方向和竖直方向的两个分运动既具有独立性,又具有等时性.V0x/2xxOθαSVx=V0y)P(x,VyVy5、平抛运动的规律
①水平速度:vx=v0,竖直速度:vy=gt合速度(实际速度)的大小:v
vxvy
22物体的合速度v与x轴之间的夹角为:
tanvyvxgtv012gt2②水平位移:xv0t,竖直位移y合位移(实际位移)的大小:sx2y2
物体的总位移s与x轴之间的夹角为:
tanygtx2v0可见,平抛运动的速度方向与位移方向不相同。而且tan2tan而2轨迹方程:由xv0t和y物线。
6、平抛运动的几个结论
①落地时间由竖直方向分运动决定:由hg212gt消去t得到:yx。可见平抛运动的轨迹为抛222v0122hgt得:t2g②水平飞行射程由高度和水平初速度共同决定:
xv0tv02hg③平抛物体任意时刻瞬时速度v与平抛初速度v0夹角θa的正切值为位移s与水平位移x夹角θ正切值的两倍。④平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半。
12gtgt2xs证明:tanv0s2⑤平抛运动中,任意一段时间内速度的变化量Δv=gΔt,方向恒为竖直向下(与g同向)。
任意相同时间内的Δv都相同(包括大小、方向),如右图。
V0△V1VV2△VV3△V
⑥以不同的初速度,从倾角为θ的斜面上沿水平方向抛出的物体,再次落到斜面上时速度与斜面的夹角a相同,与初速度无关。(飞行的时间与速度有关,速度越大时间越长。)
Ayxθvyαvxvθv0如右图:所以t2v0tan
gtan(a)vyvxgtv0所以tan(a)2tan,θ为定值故a也是定值与速度无关。
⑦速度v的方向始终与重力方向成一夹角,故其始终为曲线运动,随着时间的增加,tan变大,,速度v与重力的方向越来越靠近,但永远不能到达。
⑧从动力学的角度看:由于做平抛运动的物体只受到重力,因此物体在整个运动过程中机械能守恒。
7、平抛运动的实验探究
①如图所示,用小锤打击弹性金属片,金属片把A球沿水平方向抛出,同时B球松开,自由下落,A、B两球同时开始运动。观察到两球同时落地,多次改变小球距地面的高度和打击力度,重复实验,观察到两球落地,这说明了小球A在竖直方向上的运动为自由落体运动。
②如图,将两个质量相等的小钢球从斜面的同一高度处由静止同时释放,滑道2与光滑水平板吻接,则将观察到的现象是A、B两个小球在水平面上相遇,改变释放点的高度和上面滑道对地的高度,重复实验,A、B两球仍会在水平面上相遇,这说明平抛运动在水平方向上的分运动是匀速直线运动。
8、类平抛运动
(1)有时物体的运动与平抛运动很相似,也是在某方向物体做匀速直线运动,另一垂直方向做初速度为零的匀加速直线运动。对这种运动,像平抛又不是平抛,通常称作类平抛运动。
2、类平抛运动的受力特点:
物体所受合力为恒力,且与初速度的方向垂直。3、类平抛运动的处理方法:
在初速度v0方向做匀速直线运动,在合外力方向做初速度为零的匀加速直线运动,加速度aF合。处理时和平抛运动类似,但要分析清楚其加速度的大小和方向如何,分别运用m两个分运动的直线规律来处理。
第三模块:圆周运动『夯实基础知识』匀速圆周运动
1、定义:物体运动轨迹为圆称物体做圆周运动。2、分类:⑴匀速圆周运动:
质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度相等,这种运动就叫做匀速圆周运动。
物体在大小恒定而方向总跟速度的方向垂直的外力作用下所做的曲线运动。
注意:这里的合力可以是万有引力卫星的运动、库仑力电子绕核旋转、洛仑兹力带电粒子在匀强磁场中的偏转、弹力绳拴着的物体在光滑水平面上绕绳的一端旋转、重力与弹力的合力锥摆、静摩擦力水平转盘上的物体等.
⑵变速圆周运动:如果物体受到约束,只能沿圆形轨道运动,而速率不断变化如小球被绳或杆约束着在竖直平面内运动,是变速率圆周运动.合力的方向并不总跟速度方向垂直.3、描述匀速圆周运动的物理量
(1)轨道半径(r):对于一般曲线运动,可以理解为曲率半径。(2)线速度(v):
①定义:质点沿圆周运动,质点通过的弧长S和所用时间t的比值,叫做匀速圆周运动的线速度。②定义式:vst③线速度是矢量:质点做匀速圆周运动某点线速度的方向就在圆周该点切线方向上,实际上,线速度是速度在曲线运动中的另一称谓,对于匀速圆周运动,线速度的大小等于平均速率。
(3)角速度(ω,又称为圆频率):
①定义:质点沿圆周运动,质点和圆心的连线转过的角度跟所用时间的比值叫做匀速圆周运动的角速度。②大小:t2T(φ是t时间内半径转过的圆心角)
③单位:弧度每秒(rad/s)
④物理意义:描述质点绕圆心转动的快慢
(4)周期(T):做匀速圆周运动的物体运动一周所用的时间叫做周期。(5)频率(f,或转速n):物体在单位时间内完成的圆周运动的次数。各物理量之间的关系:
s2r2rfrtTrv2t2ftTv注意:计算时,均采用国际单位制,角度的单位采用弧度制。(6)圆周运动的向心加速度
①定义:做匀速圆周运动的物体所具有的指向圆心的加速度叫向心加速度。
v222r(还有其它的表示形式,如:anvr2f2r)②大小:anrT③方向:其方向时刻改变且时刻指向圆心。
对于一般的非匀速圆周运动,公式仍然适用,为物体的加速度的法向加速度分量,r为曲率半径;物体的另一加速度分量为切向加速度a,表征速度大小改变的快慢(对匀速圆周运动而言,a=0)(7)圆周运动的向心力
匀速圆周运动的物体受到的合外力常常称为向心力,向心力的来源可以是任何性质的力,
常见的提供向心力的典型力有万有引力、洛仑兹力等。对于一般的非匀速圆周运动,物体受到的合力的法向分力Fn提供向心加速度(下式仍然适用),切向分力F提供切向加速度。
2v2m2r(还有其它的表示形式,如:向心力的大小为:Fnmanmr22;向心力的方向时刻改变且时刻指向圆心。Fnmvmrm2fr)
T实际上,向心力公式是牛顿第二定律在匀速圆周运动中的具体表现形式。五、离心运动
1、定义:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力情况下,就做远离圆心的运动,这种运动叫离心运动。2、本质:
①离心现象是物体惯性的表现。
②离心运动并非沿半径方向飞出的运动,而是运动半径越来越大的运动或沿切线方向飞出的运动。
③离心运动并不是受到什么离心力,根本就没有这个离心力。3、条件:
当物体受到的合外力Fnman时,物体做匀速圆周运动;当物体受到的合外力Fn<man时,物体做离心运动当物体受到的合外力Fn>man时,物体做近心运动
实际上,这正是力对物体运动状态改变的作用的体现,外力改变,物体的运动情况也必然改变以适应外力的改变。
2F=0v2F<mvR2F=mvR
4.两类典型的曲线运动的分析方法比较
(1)对于平抛运动这类“匀变速曲线运动”,我们的分析方法一般是“在固定的坐标系内
正交分解其位移和速度”,运动规律可表示为
x0t,x0,;12gt.ygty2(2)对于匀速圆周运动这类“变变速曲线运动”,我们的分析方法一般是“在运动的坐标系内正交分解其力和加速度”,运动规律可表示为
F切ma切0,m2mr2m.F法F向ma向r第五章:万有引力定律人造地球卫星
『夯实基础知识』
1.开普勒行星运动三定律简介(轨道、面积、比值)
丹麦开文学家开普勒信奉日心说,对天文学家有极大的兴趣,并有出众的数学才华,开普勒在其导师弟谷连续20年对行星的位置进行观测所记录的数据研究的基楚上,通过四年多的刻苦计算,最终发现了三个定律。
第一定律:所有行星都在椭圆轨道上运动,太阳则处在这些椭圆轨道的一个焦点上;第二定律:行星沿椭圆轨道运动的过程中,与太阳的连线在单位时间内扫过的面积相等;第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等.即
r3k2T开普勒行星运动的定律是在丹麦天文学家弟谷的大量观测数据的基础上概括出的,给出了行星运动的规律。2.万有引力定律及其应用
(1)内容:宇宙间的一切物体都是相互吸引的,两个物体间的引力大小跟它们的质量成积成正比,跟它们的距离平方成反比,引力方向沿两个物体的连线方向。
FGMm(1687年)r2G6.671011Nm2/kg2叫做引力常量,它在数值上等于两个质量都是1kg的物体
相距1m时的相互作用力,1798年由英国物理学家卡文迪许利用扭秤装置测出。万有引力常量的测定卡文迪许扭秤实验原理是力矩平衡。
实验中的方法有力学放大(借助于力矩将万有引力的作用效果放大)和光学放大(借助于平面境将微小的运动效果放大)。万有引力常量的测定使卡文迪许成为“能称出地球质量的人”:对于地面附近的物体m,
2mEmgRE有mgG(式中RE为地球半径或物体到地球球心间的距离),可得到mE。2GRE(2)定律的适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远
远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离.对于均匀的球体,r是两球心间的距离.
当两个物体间的距离无限靠近时,不能再视为质点,万有引力定律不再适用,不能依公式算出F近为无穷大。
注意:万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普遍的规律之一,式中引力恒量G的物理意义是:G在数值上等于质量均为1kg的两个质点相距1m时相互作用的万有引力.
(3)地球自转对地表物体重力的影响。重力是万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转时需要向心力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力,如图所示,在纬度为的地表处,万有引力的一个分力充当物体随地球一起绕地轴自转所需的向心力F向=mRcosω2(方向垂直于地轴指向地轴),而万有引力的另一个分力就是通常所说的重力mg,其方向与支持力N反向,应竖直向下,而不是指向地心。
由于纬度的变化,物体做圆周运动的向心力F向不断变化,因而表面物体的重力随纬度的变化而变化,即重力加速度g随纬度变化而变化,从赤道到两极R逐渐减小,向心力mRcosω2减小,重力逐渐增大,相应重力加速度g也逐渐增大。
ωNFO′心mgOF引m甲
在赤道处,物体的万有引力分解为两个分力F向和m2g刚好在一条直线上,则有F=F向
mm+m2g,所以m2g=F一F向=G122-m2Rω自2。
r物体在两极时,其受力情况如图丙所示,这时物体不再做圆周运动,没有向心力,物体受到的万有引力F引和支持力N是一对平衡力,此时物体的重力mg=N=F引。
ωF引oNNF引oω乙丙
综上所述
重力大小:两个极点处最大,等于万有引力;赤道上最小,其他地方介于两者之间,但差别很小。
重力方向:在赤道上和两极点的时候指向地心,其地方都不指向地心,但与万有引力的夹角很小。
由于地球自转缓慢,物体需要的向心力很小,所以大量的近似计算中忽略了自转的影响,在此基础上就有:地球表面处物体所受到的地球引力近似等于其重力,即
GmM≈mg2R说明:由于地球自转的影响,从赤道到两极,重力的变化为千分之五;地面到地心的距离每增加一千米,重力减少不到万分之三,所以,在近似的计算中,认为重力和万有引力相等。
万有引力定律的应用:
基本方法:卫星或天体的运动看成匀速圆周运动,F万=F心(类似原子模型)方法:轨道上正常转:
Mmv2422G2mmrm2rrrT地面附近:G
Mm=mgGM=gR2(黄金代换式)2R(1)天体表面重力加速度问题
通常的计算中因重力和万有引力相差不大,而认为两者相等,即m2g=G
m1m2,R2g=GM/R2常用来计算星球表面重力加速度的大小,在地球的同一纬度处,g随物体离地面高度的增大而减小,即gh=GM/(R+h)2,比较得gh=(
r)2gRhMmM得g=G,由此推得两个不RR22设天体表面重力加速度为g,天体半径为R,由mg=Gg1R22M1同天体表面重力加速度的关系为2
g2R1M2(2)计算中心天体的质量
某星体m围绕中心天体m中做圆周运动的周期为T,圆周运动的轨道半径为r,则:
m中m42r32由G2mr得:m中2GTTr例如:利用月球可以计算地球的质量,利用地球可以计算太阳的质量。可以注意到:环绕星体本身的质量在此是无法计算的。(3)计算中心天体的密度
2M3r2Mρ===234VR3GTR3由上式可知,只要用实验方法测出卫星做圆周运动的半径r及运行周期T,就可以算出天体的质量M.若知道行星的半径则可得行星的密度(4)发现未知天体
用万有引力去分析已经发现的星体的运动,可以知道在此星体附近是否有其他星体,例如:历史上海王星是通过对天王星的运动轨迹分析发现的。冥王星是通过对海王星的运动轨迹分析发现的
人造地球卫星。
这里特指绕地球做匀速圆周运动的人造卫星,实际上大多数卫星轨道是椭圆,而中学阶段对做椭圆运动的卫星一般不作定量分析。
1、卫星的轨道平面:由于地球卫星做圆周运动的向心力是由万有引力提供的,所以卫星的轨道平面一定过地球球心,球球心一定在卫星的轨道平面内。
2、原理:由于卫星绕地球做匀速圆周运动,所以地球对卫星的引力充当卫星所需的向心力,于是有GmM2222mammrm()r2rTr实际是牛顿第二定律的具体体现
3、表征卫星运动的物理量:线速度、角速度、周期等:(1)向心加速度a向与r的平方成反比。
GM当r取其最小值时,a向取得最大值。2rGMa向max=2=g=9.8m/s2
Ra向=
(2)线速度v与r的平方根成反比v=
GM∴当h↑,v↓r
当r取其最小值地球半径R时,v取得最大值。vmax=(3)角速度与r的三分之三次方成百比
GM=Rg=7.9km/sR
=GM∴当h↑,ω↓r3
GMg-3
=≈1.23×10rad/s
RR3当r取其最小值地球半径R时,取得最大值。max=(4)周期T与r的二分之三次方成正比。
r3T=2∴当h↑,T↑
GM当r取其最小值地球半径R时,T取得最小值。
R3RTmin=2=2≈84min
GMg卫星的能量:(类似原子模型)
r增v减小(EK减小4.宇宙速度及其意义(1)三个宇宙速度的值分别为
第一宇宙速度(又叫最小发射速度、最大环绕速度、近地环绕速度):
物体围绕地球做匀速圆周运动所需要的最小发射速度,又称环绕速度,其值为:
v17.9km/s
第一宇宙速度的计算.
方法一:地球对卫星的万有引力就是卫星做圆周运动的向心力.G
mMrh2v2GM=m,v=。当h↑,v↓,所以在地球表面附近卫星的速度是它运行
rhrh的最大速度。其大小为r>>h(地面附近)时,V1GM=7.9×103m/sr方法二:在地面附近物体的重力近似地等于地球对物体的万有引力,重力就是卫星做圆周运动的向心力.
v12.当r>>h时.gh≈gmgmrh所以v1=gr=7.9×103m/s第二宇宙速度(脱离速度):
如果卫生的速大于7.9km/s而小于11.2km/s,卫星将做椭圆运动。当卫星的速度等于或大于11.2km/s的时候,物体就可以挣脱地球引力的束缚,成为绕太阳运动的人造行星,或飞到其它行星上去,把v211.2km/s叫做第二宇宙速度,第二宇宙速度是挣脱地球引力束缚的最小发射速度。
第三宇宙速度:物体挣脱太阳系而飞向太阳系以外的宇宙空间所需要的最小发射速度,又称逃逸速度,其值为:v316.7km/s
(2)当发射速度v与宇宙速度分别有如下关系时,被发射物体的运动情况将有所不同①当v<v1时,被发射物体最终仍将落回地面;
②当v1≤v<v2时,被发射物体将环绕地球运动,成为地球卫星;
③当v2≤v<v3时,被发射物体将脱离地球束缚,成为环绕太阳运动的“人造行星”;④当v≥v3时,被发射物体将从太阳系中逃逸。5.同步卫星(所有的通迅卫星都为同步卫星)
⑴同步卫星。“同步”的含义就是和地球保持相对静止(又叫静止轨道卫星),所以其周期等于地球自转周期,既T=24h,⑵特点
(1)地球同步卫星的轨道平面,非同步人造地球卫星其轨道平面可与地轴有任意夹角,而同步卫星一定位于赤道的正上方,不可能在与赤道平行的其他平面上。
这是因为:不是赤道上方的某一轨道上跟着地球的自转同步地作匀速圆运动,卫星的向心力为地球对它引力的一个分力F1,而另一个分力F2的作用将使其运行轨道靠赤道,故此,只有在赤道上空,同步卫星才可能在稳定的轨道上运行。
(2)地球同步卫星的周期:地球同步卫星的运转周期与地球自转周期相同。(3)同步卫星必位于赤道上方h处,且h是一定的.
GMmr23m2r
得rGMhrR35800km2故
(4)地球同步卫星的线速度:环绕速度
GMMm23.08km/s由G2m得vrrr(5)运行方向一定自西向东运行人造天体在运动过程中的能量关系
当人造天体具有较大的动能时,它将上升到较高的轨道运动,而在较高轨道上运动的人
造天体却具有较小的动能。反之,如果人造天体在运动中动能减小,它的轨道半径将减小,在这一过程中,因引力对其做正功,故导致其动能将增大。
同样质量的卫星在不同高度轨道上的机械能不同。其中卫星的动能为EKGMm,由于
2r重力加速度g随高度增大而减小,所以重力势能不能再用Ek=mgh计算,而要用到公式EPGMm(以无穷远处引力势能为零,M为地球质量,m为卫星质量,r为卫星轨道半r径。由于从无穷远向地球移动过程中万有引力做正功,所以系统势能减小,为负。)因此机械能为EGMm。同样质量的卫星,轨道半径越大,即离地面越高,卫星具有的机械能2r越大,发射越困难。
第六章:机械能
第一模块:功和功率
『夯实基础知识』(一)功:
1、概念:一个物体受到力的作用,并且在这个力的方向上发生了一段位移,就说这个力...对物体做了功。
2、做功的两个必要因素:力和物体在力的方向上的位移
3、公式:W=FScosα(α为F与s的夹角).功是力的空间积累效应。4、单位:焦耳(J)
5、意义:功是能转化的量度,反映力对空间的积累效果。6、说明
(1)公式只适用于恒力做功位移是指力的作用点通过位移(2)要分清“谁做功,对谁做功”。即:哪个力对哪个物体做功。
(3)力和位移都是矢量:可以分解力也可以分解位移。如:位移:沿力方向分解,与力垂直方向分解。
(4)功是标量,没有方向,但功有正、负值。其正负表示力在做功过程中所起的作用。正功表示动力做功(此力对物体的运动有推动作用),负功表示阻力做功.
(5)功大小只与F、s、α这三个量有关.与物体是否还受其他力、物体运动的速度、加速度等其他因素无关
(二)功的四个基本问题。
涉及到功的概念的基本问题,往往会从如下四个方面提出。
1、做功与否的判断问题:物体受到力的作用,并在力的方向上通过一段位移,我们就说这个力对物体做了功。由此看来,做功与否的判断,关键看功的两个必要因素,第一是力;第二是力的方向上的位移。而所谓的“力的方向上的位移”可作如下理解:当位移平行于力,则位移就是力的方向上的位的位移;当位移垂直于力,则位移就不是力的方向上的位移;当位移与力既不垂直又不平行于力,则可对位移进行正交分解,其平行于力的方向上的分位移仍被称为力的方向上的位移。
2、会判断正功、负功或不做功。判断方法有:(1)用力和位移的夹角θ判断;当0当当
22时F做正功,
2时F不做功,
时F做负功。
(2)用力和速度的夹角θ判断定;(3)用动能变化判断。3、做功多少的计算问题:
(1)按照定义求功。即:W=Fscosθ。公式中F是做功的力;S是F所作用的物体发生的位移;而θ则是F与S间的夹角。这种方法也可以说成是:功等于恒力和沿该恒力方向上的位移的乘积。
具体求功时可以有两种处理办法①W等于力F乘以物体在力F方向上的分位移scosα,即将物体的位移分解为沿F方向上和垂直F方向上的两个分位移
②W等于力F在位移s方向上的分力Fcosα乘以物体的位移s,即将力F分解为沿s方向和垂直s方向的两个分力
在高中阶段,这种方法只适用于恒力做功。至于变力做功的计算,通常可以利用功能关系通过能量变化的计算来了解变力的功。(2)W=Pt
(3)用动能定理W=ΔEk或功能关系求功。当F为变力时,高中阶段往往考虑用这种方法求功。
这种方法的依据是:做功的过程就是能量转化的过程,功是能的转化的量度。如果知道某一过程中能量转化的数值,那么也就知道了该过程中对应的功的数值(4)能量的转化情况求,(功是能量转达化的量度)(5)F-s图象,图象与位移轴所围均“面积”为功的数值.(6)多个力的总功求解
①用平行四边形定则求出合外力,再根据w=Fscosα计算功.注意α应是合外力与位移s间的夹角.
②分别求各个外力的功:W1=F1scosα1,W2=F2scosα2……再求各个外力功的代数和.4、做功意义的理解问题:做功意味着能量的转移与转化,做多少功,相应就有多少能量发生转移或转化。
(三)了解常见力做功的特点:
(1)一类是与势能相关的力,如重力、弹簧的弹力、电场力等,它们的功与路程无关系,只与位移有关。
重力做功和路径无关,只与物体始末位置的高度差h有关:W=mgh,当末位置低于初位置时,W>0,即重力做正功;反之则重力做负功。(2)摩擦力做功静摩擦力做功的特点
①静摩擦力可以做正功,也可以做负功,还可以不做功。
②在静摩擦力做功的过程中,只有机械能的相互转移(静摩擦力起着传递机械能的作用),而没有机械能转化为其他形式的能.滑动摩擦力做功的特点
①滑动摩擦力可以对物体做正功,也可以对物体做负功,当然也可以不做功。
②做功与物体的运动路径有关。滑动摩擦力做功要看物体运动的路程,这是摩擦力做功的特点,必须牢记。
③一对滑动摩擦力做功的过程中,如图所示,上面不光滑的长木板,放在光滑的水平地面上,一小木块以速度V0从木板的左端滑上木板,当木块和木板相对静止时,木板相对地面滑动了S,小木块相对木板滑动了d,则由动能定理知:
滑动摩擦力对木块所做功为:
Ek木块f(sd)
滑动摩擦力对木板所做功为:
Ek木板fs
得:Ek木板Ek木块fd
式表明木块和木板组成的系统的机械能的减少量等于滑动摩擦力与木块相对木板的位移的乘积。这部分减少的能量转化为内能。(3)一对作用力和反作用力做功的特点:
①作用力与反作用力同时存在,作用力做功时,反作用力可能做功,也可能不做功,可能做正功,也可能做负功,不要以为作用力与反作用力大小相等、方向相反,就一定有作用力、反作用力的功数值相等。
②一对互为作用反作用的摩擦力做的总功可能为零(静摩擦力)、可能为负(滑动摩擦力),但不可能为正
(3)斜面上支持力做功问题:
①斜面固定不动,物体沿斜面下滑时斜面对物体的支持力不做功
②斜面置于光滑的水平面上,一个物体沿斜面下滑,物体受到的支持力对物体做负功,如图所示,物体下滑到斜面底端,斜面由于不受地面摩擦,后退一段距离,需要注意的是位移S是物体相对于地面的位移,不要认为是斜面,否则会得出物体受到的支持力做功为0的错误结论。
FSQPF
功率
1、功率的定义:功跟完成这些功所用时间的比值叫做功率,它表示物体做功的快慢.2、功率的定义式:PW,所求出的功率是时间t内的平均功率。t′3、功率的计算式:P=Fvcosθ,其中θ是力与速度间的夹角。该公式有两种用法:①求某一时刻的瞬时功率。这时F是该时刻的作用力大小,v取瞬时值,对应的P为F在该时刻的瞬时功率;②当v为某段位移(时间)内的平均速度时,则要求这段位移(时间)内F必须为恒力,对应的P为F在该段时间内的平均功率。
③重力的功率可表示为PG=mgVy,即重力的瞬时功率等于重力和物体在该时刻的竖直分速度之积
4、单位:瓦(w),千瓦(kw);5、标量
6、功率的物理意义:功率是描述做功快慢的物理量。7、通常讲的汽车的功率是指汽车的牵引力的功率PF牵v二、汽车的两种起动问题
汽车的两种加速问题。当汽车从静止开始沿水平面加速运动时,有两种不同的加速过程,但分析时采用的基本公式都是PF牵v和F-f=ma
①恒定功率的加速。由公式P=Fv和F-f=ma知,由于P恒定,随着v的增大,F必将减小,a也必将减小,汽车做加速度不断减小的加速运动,直到F=f,a=0,这时v达到最大值
PPvmmm。可见恒定功率的加速一定不是匀加速。这种加速过程发动机做的功只能用
FfW=Pt计算,不能用W=Fs计算(因为F为变力)。
②恒定牵引力的加速。由公式P=Fv和F-f=ma知,由于F恒定,所以a恒定,汽车做匀加速运动,而随着v的增大,P也将不断增大,直到P达到额定功率Pm,功率不能再增大了。
PP这时匀加速运动结束,其最大速度为vmmmvm,此后汽车要想继续加速就只能做Ff恒定功率的变加速运动了。可见恒定牵引力的加速时功率一定不恒定。这种加速过程发动机
做的功只能用W=Fs计算,不能用W=Pt计算(因为P为变功率)。要注意两种加速运动过程的最大速度的区别。
友情提示:本文中关于《高中物理必修2知识点总结》给出的范例仅供您参考拓展思维使用,高中物理必修2知识点总结:该篇文章建议您自主创作。
来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。