荟聚奇文、博采众长、见贤思齐
当前位置:公文素材库 > 计划总结 > 工作总结 > 高一数学必修1函数知识点总结

高一数学必修1函数知识点总结

网站:公文素材库 | 时间:2019-05-27 19:29:50 | 移动端:高一数学必修1函数知识点总结

高一数学必修1函数知识点总结

函数

映射定义:设A,B是两个非空的集合,如果按某一个确定的对应关系,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:B为从集合A到集合B的一个映射传统定义:如果在某变化中有两个变量x,y,并且对于x在某个范围内的每一个确定的值,定义按照某个对应关系f,y都有唯一确定的值和它对应。那么y就是x的函数。记作yf(x).近代定义:函数是从一个数集到另一个数集的映射。定义域函数及其表示函数的三要素值域对应法则解析法函数的表示方法列表法图象法传统定义:在区间a,b上,若ax1x2b,如f(x1)f(x2),则f(x)在a,b上递增,a,b是递增区间;如f(x1)f(x2),则f(x)在a,b上递减,a,b是的递减区间。单调性导数定义:在区间a,b上,若f(x)0,则f(x)在a,b上递增,a,b是递增区间;如f(x)0a,b是的递减区间。则f(x)在a,b上递减,最大值:设函数yf(x)的定义域为I,如果存在实数M满足:(1)对于任意的xI,都有f(x)M;函数函数的基本性质最值(2)存在x0I,使得f(x0)M。则称M是函数yf(x)的最大值最小值:设函数yf(x)的定义域为I,如果存在实数N满足:(1)对于任意的xI,都有f(x)N;(2)存在x0I,使得f(x0)N。则称N是函数yf(x)的最小值(1)f(x)f(x),x定义域D,则f(x)叫做奇函数,其图象关于原点对称。奇偶性(2)f(x)f(x),x定义域D,则f(x)叫做偶函数,其图象关于y轴对称。奇偶函数的定义域关于原点对称周期性:在函数f(x)的定义域上恒有f(xT)f(x)(T0的常数)则f(x)叫做周期函数,T为周期;T的最小正值叫做f(x)的最小正周期,简称周期(1)描点连线法:列表、描点、连线向左平移个单位:y1y,x1axyf(xa)向右平移a个单位:yy,xaxyf(xa)11平移变换向上平移b个单位:xx,y11byybf(x)向下平移b个单位:x1x,y1byybf(x)横坐标变换:把各点的横坐标x1缩短(当w1时)或伸长(当0w1时)到原来的1/w倍(纵坐标不变),即xwxyf(wx)1伸缩变换纵坐标变换:把各点的纵坐标y伸长(A1)或缩短(0A1)到原来的A倍1函数图象的画法(横坐标不变),即y1y/Ayf(x)(xx12x0x12x0x2)变换法关于点(x,y)对称:2y0yf(2x0x)00yy12y0y12y0y关于直线xx0对称:xx12x0x12x0xyf(2x0x)yy1y1y对称变换xx1xx关于直线yy0对称:12y0yf(x)yy2yy12y0y10xx11yf(x)关于直线yx对称:yy1一、函数的定义域的常用求法:

1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数ytanx中

xk2(kZ);余切函数ycotx中;6、如果函数是由实际意义确定的解析式,应

依据自变量的实际意义确定其取值范围。二、函数的解析式的常用求法:

1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法三、函数的值域的常用求法:

1、换元法;2、配方法;3、判别式法;4、几何法;5、不等式法;6、单调性法;7、直接法

四、函数的最值的常用求法:

1、配方法;2、换元法;3、不等式法;4、几何法;5、单调性法五、函数单调性的常用结论:

1、若f(x),g(x)均为某区间上的增(减)函数,则f(x)g(x)在这个区间上也为增(减)函数

2、若f(x)为增(减)函数,则f(x)为减(增)函数

3、若f(x)与g(x)的单调性相同,则yf[g(x)]是增函数;若f(x)与g(x)的单调性不同,则yf[g(x)]是减函数。

4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。

5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。

六、函数奇偶性的常用结论:

1、如果一个奇函数在x0处有定义,则f(0)0,如果一个函数yf(x)既是奇函数又是偶函数,则f(x)0(反之不成立)

2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。3、一个奇函数与一个偶函数的积(商)为奇函数。

4、两个函数yf(u)和ug(x)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。5、若函数f(x)的定义域关于原点对称,则f(x)可以表示为

f(x)12[f(x)f(x)]12[f(x)f(x)],该式的特点是:右端为一个奇函数和

一个偶函数的和。

mn根式:a,n为根指数,a为被开方数nmnaa分数指数幂arasars(a0,r,sQ)指数的运算rsrs指数函数性质(a)a(a0,r,sQ)rrs(ab)ab(a0,b0,rQ)定义:一般地把函数yax(a0且a1)叫做指数函数。指数函数性质:见表1对数:xlogaN,a为底数,N为真数loga(MN)logaMlogaN;基本初等函数MloglogaMlogaN;a.N对数的运算性质nlogaMnlogaM;(a0,a1,M0,N0)对数函数logcblogab(a,c0且a,c1,b0)换底公式:logac对数函数定义:一般地把函数ylogax(a0且a1)叫做对数函数性质:见表1幂函数定义:一般地,函数yx叫做幂函数,x是自变量,是常数。性质:见表2

表1

指数函数yaxa0,a1-3-

对数数函数ylogaxa0,a定义域值域xRx0,y0,yR图象过定点(0,1)减函数x(,0)时,y(1,)x(0,)时,y(0,1)过定点(1,0)增函数x(,0)时,y(0,1)x(0,)时,y(1,)减函数x(0,1)时,y(0,)x(1,)时,y(,0)增函数x(0,1)时,y(,0)x(1,)时,y(0,)性质abababab表2pq幂函数yx(R)00111p为奇数q为奇数奇函数p为奇数q为偶数p为偶数q为奇数增函数偶函数第一象限性质减函数(0,1)过定点

扩展阅读:高一数学必修一第一章集合与函数知识点总结[1]

高一数学必修1各章知识点总结

第一章集合与函数概念

一、集合有关概念1.集合的含义

2.集合的中元素的三个特性:

(1)元素的确定性如:世界上最高的山

(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰

洋}

(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。注意:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集N*或N+整数集Z有理数集Q实数集R

1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{xR|x-3>2},{x|x-3>2}

3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:

4、集合的分类:

(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合

(3)空集不含任何元素的集合例:{x|x2

=-5}二、集合间的基本关系1.包含关系子集

注意:AB有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.相等关系:A=B(5≥5,且5≤5,则5=5)

实例:设A={x|x2

-1=0}B={-1,1}元素相同则两集合相等即:①任何一个集合是它本身的子集。AA

②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)

③如果AB,BC,那么AC④如果AB同时BA那么A=B

3.不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1

个真子集三、集合的运算运算交集并集补集类型定由所有属于A且属由所有属于集合A或设S是一个集合,A是义于B的元素所组成属于集合B的元素所S的一个子集,由S中的集合,叫做A,B的组成的集合,叫做A,B所有不属于A的元素组成的集合,叫做S中子交集.记作AB(读的并集.记作:AB集A的补集(或余集)作‘A交B’),即(读作‘A并B’),即

第1页共5页

AB={x|xA,且xB}.AB={x|xA,或xB}).CSA={x|xS,且xA}韦恩图示SS记作CSA,即ABABA图1图2(CuA)(CuB)=Cu(AB)(CuA)(CuB)=Cu(AB)A(CuA)=UA(CuA)=Φ.AA=A性AΦ=ΦAB=BAABA质ABBAA=AAΦ=AAB=BAABAABB

例题:

1.下列四组对象,能构成集合的是()A某班所有高个子的学生B著名的艺术家C一切很大的书D倒数等于它自身的实数2.集合{a,b,c}的真子集共有个

3.若集合M={y|y=x-2x+1,xR},N={x|x≥0},则M与N的关系是.

2

4.设集合A=x1x2,B=xxa,若AB,则a的取值范围是

5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化正确得有31人,

两种实验都做错得有4人,则这两种实验都做对的有人。

6.用描述法表示图中阴影部分的点(含边界上的点)组成的集合M=.

7.已知集合A={x|x+2x-8=0},B={x|x-5x+6=0},C={x|x-mx+m-19=0},若∩C=Φ,求m的值

2222

学实验做得

B∩C≠Φ,A

二、函数的有关概念

1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.注意:

1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;

(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;

(4)指数、对数式的底必须大于零且不等于1.

(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各

第2页共5页部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,

(7)实际问题中的函数的定义域还要保证实际问题有意义.

相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);

②定义域一致(两点必须同时具备)(见课本21页相关例2)2.值域:先考虑其定义域(1)观察法(2)配方法(3)代换法

3.函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.(2)画法A、描点法:B、图象变换法

常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间

(3)区间的数轴表示.5.映射

一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作f(对应关系):A(原象)B(象)

对于映射f:A→B来说,则应满足:

(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象。6.分段函数

(1)在定义域的不同部分上有不同的解析表达式的函数。(2)各部分的自变量的取值情况.

(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.补充:复合函数

如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。

二.函数的性质

1.函数的单调性(局部性质)(1)增函数

设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1注意:函数的单调性是函数的局部性质;(2)图象的特点

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

(3).函数单调区间与单调性的判定方法(A)定义法:

1任取x1

,x2

∈D,且x1

2利用图象求函数的最大(小)值○

3利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);例题:

1.求下列函数的定义域:⑴yx22x15⑵

x33y1(x12x1)2.设函数f(x)的定义域为[0,1],则函数f(x2)的定义域为__

3.若函数f(x1)的定义域为[2,3],则函数f(2x1)的定义域是

x4.函数f(x)2(x1)x2(1x2),若f(x)3,则x=2x(x2)5.求下列函数的值域:

⑴yx22x3(xR)⑵yx22x3x[1,2](3)yx12x(4)yx24x56.已知函数f(x1)x24x,求函数f(x),f(2x1)的解析式

7.已知函数

f(x)满足2f(x)f(x)3x4,则f(x)=。

8.设f(x)是R上的奇函数,且当x[0,)时,f(x)x(13x),则当x(,0)时f(x)=

f(x)在R上的解析式为9.求下列函数的单调区间:⑴yx22x3⑵yx22x3⑶yx26x1

10.判断函数yx31的单调性并证明你的结论.211.设函数f(x)1x判断它的奇偶性并且求证:f(1)f(x).1x2x

第5页共5页

友情提示:本文中关于《高一数学必修1函数知识点总结》给出的范例仅供您参考拓展思维使用,高一数学必修1函数知识点总结:该篇文章建议您自主创作。

来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。


高一数学必修1函数知识点总结》由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
链接地址:http://www.bsmz.net/gongwen/471952.html
相关文章