荟聚奇文、博采众长、见贤思齐
当前位置:公文素材库 > 计划总结 > 工作总结 > 高二数学知识点总结大大全(必修)

高二数学知识点总结大大全(必修)

网站:公文素材库 | 时间:2019-05-27 19:30:06 | 移动端:高二数学知识点总结大大全(必修)

高二数学知识点总结大大全(必修)

高二数学知识点总结大大全(必修)

扩展阅读:高二数学知识点总结大大全(必修)[1]

高二数学知识点总结大全(必修)

第1章空间几何体1

1.1柱、锥、台、球的结构特征1.2空间几何体的三视图和直观图

11三视图:

正视图:从前往后侧视图:从左往右俯视图:从上往下22画三视图的原则:

长对齐、高对齐、宽相等

33直观图:斜二测画法44斜二测画法的步骤:

(1).平行于坐标轴的线依然平行于坐标轴;

(2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;(3).画法要写好。

5用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图

1.3空间几何体的表面积与体积(一)空间几何体的表面积

1棱柱、棱锥的表面积:各个面面积之和

2圆柱的表面积S2rl2r23圆锥的表面积Srlr2

4圆台的表面积Srlr2RlR2

5球的表面积S4R2

(二)空间几何体的体积1柱体的体积VS底h2锥体的体积V13S底h

3台体的体积V13(S上S上S下S下)h4球体的体积V43R3

第二章直线与平面的位置关系

2.1空间点、直线、平面之间的位置关系

2.1.1

1平面含义:平面是无限延展的2平面的画法及表示

(1)平面的画法:水平放置的平面通常画成

一个平行四边形,锐角画成450,且横边画成

DC邻边的2倍长(如图)α(2)平面通常用希腊字母α、β、γ等表示,AB如平面α、平面β等,也可以用表示平面的平

行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面

AC、平面ABCD等。3三个公理:

(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为

A∈L

AB∈L=>LααLA∈αB∈α公理1作用:判断直线是否在平面内

AB(2)公理2:过不在一条直线上的三点,有且只有一个平面。C符号表示为:A、B、C三点不共线=>有且只有一个平面αα,

使A∈α、B∈α、C∈α。

公理2作用:确定一个平面的依据。

(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。β符号表示为:P∈α∩β=>α∩β=L,且P∈L

Pα公理3作用:判定两个平面是否相交的依据L

2.1.2空间中直线与直线之间的位置关系

1空间的两条直线有如下三种关系:

相交直线:同一平面内,有且只有一个公共点;共面直线

平行直线:同一平面内,没有公共点;

异面直线:不同在任何一个平面内,没有公共点。2公理4:平行于同一条直线的两条直线互相平行。符号表示为:设a、b、c是三条直线

a∥b=>a∥cc∥b

强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都

-2-

适用。

公理4作用:判断空间两条直线平行的依据。

3等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4注意点:

①a"与b"所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上;②两条异面直线所成的角θ∈(0,);2③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;

④两条直线互相垂直,有共面垂直与异面垂直两种情形;

⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

2.1.32.1.4空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:

(1)直线在平面内有无数个公共点

(2)直线与平面相交有且只有一个公共点(3)直线在平面平行没有公共点

指出:直线与平面相交或平行的情况统称为直线在平面外,可用aα来表示

aαa∩α=Aa∥α

2.2.直线、平面平行的判定及其性质

2.2.1直线与平面平行的判定

1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。简记为:线线平行,则线面平行。符号表示:

bβ=>a∥αa∥b

2.2.2平面与平面平行的判定

1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。

符号表示:

aβbβa∩b=Pβ∥αa∥αb∥α2、判断两平面平行的方法有三种:(1)用定义;(2)判定定理;

(3)垂直于同一条直线的两个平面平行。

2.2.32.2.4直线与平面、平面与平面平行的性质

1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。简记为:线面平行则线线平行。符号表示:

a∥α

aβa∥b

-3-

α∩β=b

作用:利用该定理可解决直线间的平行问题。

2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。符号表示:

α∥β

α∩γ=aa∥bβ∩γ=b

作用:可以由平面与平面平行得出直线与直线平行

2.3直线、平面垂直的判定及其性质

2.3.1直线与平面垂直的判定1、定义

如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。如图,直线与平面垂直时,它们唯一公共点P叫做垂足。

Lpα

2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

注意点:a)定理中的“两条相交直线”这一条件不可忽视;

b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。

2.3.2平面与平面垂直的判定

1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图

形A

梭lβ

2、二面角的记法:二面角α-l-β或α-AB-β

3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。

2.3.32.3.4直线与平面、平面与平面垂直的性质

1、定理:垂直于同一个平面的两条直线平行。

2性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

本章知识结构框图

-4-

直线与直线的位置关系

直线与平面的位置关系平面与平面的位置第三章直线与方程

3.1直线的倾斜角和斜率

3.1倾斜角和斜率

1、直线的倾斜角的概念:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时,规定α=0°.2、倾斜角α的取值范围:0°≤α<180°.

当直线l与x轴垂直时,α=90°.

3、直线的斜率:

一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k=tanα

⑴当直线l与x轴平行或重合时,α=0°,k=tan0°=0;⑵当直线l与x轴垂直时,α=90°,k不存在.由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在.4、直线的斜率公式:

给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:

平面(公理1、公理2、公理3、公理4)空间直线、平面的位置关系斜率公式:

3.1.2两条直线的平行与垂直

1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即

2、直线的截距式方程:已知直线l与x轴的交点为A(a,0),与y轴的交点为B(0,b),其中a0,b0

注意:上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2,那么一定有L1∥L2

2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即

3.2.1直线的点斜式方程

1、直线的点斜式方程:直线l经过点P0(x0,y0),且斜率为k

yy0k(xx0)

2、、直线的斜截式方程:已知直线l的斜率为k,且与y轴的交点为

(0,b)

ykxb

3.2.2直线的两点式方程

1、直线的两点式方程:已知两点P1(x1,x2),P2(x2,y2)其中

(x1x2,y1y2)

yy1xx1

y2y1x(x1x2,y1y2)

2x13.2.3直线的一般式方程

1、直线的一般式方程:关于x,y的二元一次方程AxByC0(A,B不同时为0)

2、各种直线方程之间的互化。

3.3直线的交点坐标与距离公式

3.3.1两直线的交点坐标

1、给出例题:两直线交点坐标

L1:3x+4y-2=0

L1:2x+y+2=0

解:解方程组3x4y202x2y20

得x=-2,y=2

所以L1与L2的交点坐标为M(-2,2)

3.3.2两点间距离两点间的距离公式

P1P2x2x22y2y12

3.3.3点到直线的距离公式1.点到直线距离公式:

点P(xAx0By0C0,y0)到直线l:AxByC0的距离为:dA2B2

2、两平行线间的距离公式:

已知两条平行线直线l1和l2的一般式方程为l1:

AxByC10,

l2:AxByC20,则l1与lC22的距离为dC1

A2B2

第四章

圆与方程

4.1.1圆的标准方程

1、圆的标准方程:(xa)2(yb)2r2

圆心为A(a,b),半径为r的圆的方程

2、点M(x220,y0)与圆(xa)(yb)r2的关系的判断方法:

(1)(x0a)2(y0b)2>r2,点在圆外

(2)(x220a)(y0b)=r2,点在圆上(3)(x0a)2(y0b)2点:

(1)当lr1r2时,圆C1与圆C2相离;(2)当lr1r2时,圆C1与圆C2外切;

(3)当|r1r2|lr1r2时,圆C1与圆C2相交;

(4)当l|r1r2|时,圆C1与圆C2内切;(5)当l|r1r2|时,圆C1与圆C2内含;

4.2.3直线与圆的方程的应用

1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法

用坐标法解决几何问题的步骤:

第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;

第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论.4.3.1空间直角坐标系

RMOQyPM"x

1、点M对应着唯一确定的有序实数组(x,y,z),x、y、z分别是P、Q、R在x、y、z轴上的坐标

2、有序实数组(x,y,z),对应着空间直角坐标系中的一点

3、空间中任意点M的坐标都可以用有序实数组(x,y,z)来表示,该数组叫做点M在此空间直角坐标系中的坐标,记M(x,y,z),x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标。4.3.2空间两点间的距离公式

1、空间中任意一点P1(x1,y1,z1)到点P2(x2,y2,z2)之间的距离公式

zP2P1OMHNM1M22yN1NxP221P2(x1x2)(y1y2)(z21z2)

友情提示:本文中关于《高二数学知识点总结大大全(必修)》给出的范例仅供您参考拓展思维使用,高二数学知识点总结大大全(必修):该篇文章建议您自主创作。

来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。


高二数学知识点总结大大全(必修)》由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
链接地址:http://www.bsmz.net/gongwen/471984.html