荟聚奇文、博采众长、见贤思齐
当前位置:公文素材库 > 计划总结 > 工作总结 > 北师大版九年数学知识点总结

北师大版九年数学知识点总结

网站:公文素材库 | 时间:2019-05-27 19:34:25 | 移动端:北师大版九年数学知识点总结

北师大版九年数学知识点总结

北师大版《数学》(九年级上册)知识点总结

第一章证明(二)

一、公理(1)三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。

(2)两边及其夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)。(3)两角及其夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)。(4)全等三角形的对应边相等、对应角相等。

推论:两角及其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS”)。二、等腰三角形

1、等腰三角形的性质

(1)等腰三角形的两个底角相等(简称:等边对等角)

(2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。等腰三角形的其他性质:

①等腰直角三角形的两个底角相等且等于45°

②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

③等腰三角形的三边关系:设腰长为a,底边长为b,则

b3、角的平分线的判定定理:

在一个角的内部,且到角的两边距离相等的点在这个角的平分线上。六、线段垂直平分线的性质与判定

1、线段的垂直平分线:垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。

线段垂直平分线的判定定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。七、反证法

八、互逆命题、互逆定理

1、在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。

2、如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理。

第二章一元二次方程

一、一元二次方程

(一)、一元二次方程定义

含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。(二)、一元二次方程的一般形式2axbxc0(a0),它的特征是:等式左边是一个关于未知数x的二次多项式,等式右边是零,其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。二、一元二次方程的解法

1、直接开平方法

直接开平方法适用于解形如(xa)2b的一元二次方程。当b0时,xab,xab;当b2、平行四边形的性质

(1)平行四边形的对边平行且相等。(2)平行四边形相邻的角互补,对角相等(3)平行四边形的对角线互相平分。

(4)平行四边形是中心对称图形,对称中心是对角线的交点。常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。

(2)推论:夹在两条平行线间的平行线段相等。3、平行四边形的判定

(1)定义:两组对边分别平行的四边形是平行四边形(2)定理1:两组对角分别相等的四边形是平行四边形(3)定理2:两组对边分别相等的四边形是平行四边形(4)定理3:对角线互相平分的四边形是平行四边形(5)定理4:一组对边平行且相等的四边形是平行四边形4、平行四边形的面积S平行四边形=底边长×高=ah二、矩形

1、矩形的定义

有一个角是直角的平行四边形叫做矩形。2、矩形的性质

(1)矩形的对边平行且相等(2)矩形的四个角都是直角

(3)矩形的对角线相等且互相平分(4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。

3、矩形的判定

(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积S矩形=长×宽=ab三、菱形

1、菱形的定义

有一组邻边相等的平行四边形叫做菱形2、菱形的性质

(1)菱形的四条边相等,对边平行(2)菱形的相邻的角互补,对角相等

(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角

(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。

3、菱形的判定

(1)定义:有一组邻边相等的平行四边形是菱形

(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积S菱形=底边长×高=两条对角线乘积的一半四、正方形(3~10分)

1、正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、正方形的性质

(1)正方形四条边都相等,对边平行(2)正方形的四个角都是直角

(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角

(4)正方形既是中心对称图形又是轴对称图形;对称中心是对角线的交点;对称轴有四条,是对角线所在的直线和对边中点连线所在的直线。

3、正方形的判定

判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证它是菱形。先证它是菱形,再证它是矩形。

b24、正方形的面积设正方形边长为a,对角线长为bS正方形=a

22五、等腰梯形

1、等腰梯形的定义

两腰相等的梯形叫做等腰梯形。2、等腰梯形的性质

(1)等腰梯形的两腰相等,两底平行。

(2)等腰梯形同一底上的两个角相等,同一腰上的两个角互补。(3)等腰梯形的对角线相等。

(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。3、等腰梯形的判定

(1)定义:两腰相等的梯形是等腰梯形

(2)定理:在同一底上的两个角相等的梯形是等腰梯形(3)对角线相等的梯形是等腰梯形。(选择题和填空题可直接用)六、三角形中的中位线

1、三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线。2、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。3、常用结论:任一个三角形都有三条中位线,由此有:

结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。结论2:三条中位线将原三角形分割成四个全等的三角形。

结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。结论4:三角形一条中线和与它相交的中位线互相平分。

结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。七、有关四边形四边中点问题的知识点:

(1)顺次连接任意四边形的四边中点所得的四边形是平行四边形;(2)顺次连接矩形的四边中点所得的四边形是菱形;(3)顺次连接菱形的四边中点所得的四边形是矩形;(4)顺次连接等腰梯形的四边中点所得的四边形是菱形;

(5)顺次连接对角线相等的四边形四边中点所得的四边形是菱形;(6)顺次连接对角线互相垂直的四边形四边中点所得的四边形是矩形;

(7)顺次连接对角线互相垂直且相等的四边形四边中点所得的四边形是正方形;

第四章视图与投影

1、投影

投影:物体在光线的照射下,在地面上或墙壁上留下它的影子,这就是投影现象。平行投影:太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影。

中心投影:探照灯、手电筒、路灯和台灯的光线可以看成是从一点发出的,像这样的光线所形成的投影称为中心投影。

2、视点、视线、盲区

第五章反比例函数

1、反比例函数的概念

一般地如果两个变量x,y之间的关系可以表示为yk(k是常数,k0)的形式,那么称y是x的反比例函x数。(反比例函数的解析式也可以写成ykx1的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。)2、反比例函数的图象

反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x0,函数y0,所以,它的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。3、反比例函数的性质反比例函数k的符号yOx①x的取值范围是x0,y的取值范围是y0;②当k>0时,函数图象的两个分支分别在第一、三象限。在每个象限内,y随x的增大而减小。k>0yk(k0)xk

扩展阅读:北师大版九年级数学上册知识点总结

九(上)数学知识点答案

第一章证明(一)

1、你能证明它吗?

(1)三角形全等的性质及判定

全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、

(2)等腰三角形的判定、性质及推论

性质:等腰三角形的两个底角相等(等边对等角)

判定:有两个角相等的三角形是等腰三角形(等角对等边)

推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)(3)等边三角形的性质及判定定理

性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。

判定定理:有一个角是60度的等腰三角形是等边三角形。或者三个角都相等的三角形是等边三角形。

(4)含30度的直角三角形的边的性质

定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。2、直角三角形

(1)勾股定理及其逆定理

定理:直角三角形的两条直角边的平方和等于斜边的平方。

逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。(2)命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。

(3)直角三角形全等的判定定理

定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)3、线段的垂直平分线

(1)线段垂直平分线的性质及判定

性质:线段垂直平分线上的点到这条线段两个端点的距离相等。

判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。(2)三角形三边的垂直平分线的性质

三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。

(3)如何用尺规作图法作线段的垂直平分线

分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线。4、角平分线

(1)角平分线的性质及判定定理

性质:角平分线上的点到这个角的两边的距离相等;

判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上。(2)三角形三条角平分线的性质定理

性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等。(3)如何用尺规作图法作出角平分线

第二章一元二次方程

1、花边有多宽

(1)整式方程及一元二次方程的概念

整式方程:方程两边都是关于未知数的整式;

一元二次方程:只含有一个未知数x的整式方程,并且都可以化作ax+bx+c=0(a,b,c为常数,a≠0)的形式。

(2)一元二次方程的一般式及各系数含义

2

一般式:ax+bx+c=0(a,b,c为常数,a≠0),其中,a是二次项系数,b是一次项系数,c是常数项。

2、配方法

(1)直接开平方法的定义

利用平方根的定义直接开平方求一元二次方程的解的方法叫直接开平方法。(2)配方法的步骤和方法

一、移项,把方程的常数项移到等号右边;二、配,方程两边都加上一次项系数的一半的平方,把原方程化为(x+m)2=n(n≥0)的形式;三、直接用开平方法求出它的解。3、公式法

(1)求根公式b-4ac≥0时,x=

22

bb4ac2a2

(2)求一元二次方程的一般式及各系数的含义

一、将方程化为一元二次方程的一般ax2+bx+c=0(a,b,c为常数,a≠0);二、计算b2-4ac的值,当b2-4ac≥0时,方程有实数根,否则方程无实数根;三、代入求根公式,求出方程的根;四、写出方程的两个根。4、分解因式法

(1)分解因式的概念

当一元二次方程的一边为0,而另一边易于分解成两个一次因式的乘积时,根据ab=0,那么a=0或b=0,这种解一元二次方程的方法称为分解因式。(2)分解因式法解一元二次方程的一般步骤

一、将方程右边化为零;二、将方程左边分解为两个一次因式的乘积;三、设每一个因式分别为0,得到两个一元二次方程;四、解这两个一元二次方程,它们的解就是原方程的解。5、为什么是0.618(1)什么叫黄金比

线段AB上一点C分线段AB成两条线段AC,BC,若黄金分割点,其中

ACABACAB=

BCAC,则C点叫线段AB的

叫黄金比,其值为0.618。

(2)列一元二次方程解应用题的一般步骤

一、审题;二、设求知数;三、列代数式;四、列方程;五、解方程;六、检验;七、答

第三章证明(三)

1、平行四边行

(1)平行四边形的定义、性质及判定定义:两组对边分别平行的四边形叫平行四边形

性质:平行四边形的对边分别平行;平行四边形的对边分别相等;平行四边形的对角分别相等;平行四边形的对角线互相平分。判定:两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边行。(2)等腰梯形的性质及判定

性质:等腰梯形在同一底上的两个角相等;等腰梯形的两条对角线相等。

判定:同一底上的两个角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形。(3)三角形中位线定义及性质

定义:连接三角形两边中点的线段叫做三角形的中位线。性质:三角形的中位线平行于第三边,且等于第三边的一半。2、特殊平行四边形

(1)矩形、菱形、正方形、直角三角形的性质及判定

第四章视图与投影

1、视图

(1)三视图的种类及三种视图之间的关系三视图有主视图、左视图和俯视图;三种视图间的关系:主、俯长对正;主、左高平齐;俯、左宽相等;(2)会画圆柱、圆锥、球的三视图

2、太阳光与影子

(1)投影与平行投影的含义、平行投影的性质

一般地,用光线照射物体,在某个平面上得到的影子叫做投影;由平行光线形成的投影是平行投影。

平行投影的性质:物体上的点以及影子上的对应点的连线互相平行;当物体与投影面平行时,所形成的影子与物体全等;同一时刻,在平行光线下,互相平行的物体的高度与影子长度的比值相等。

(2)物体影长的变化规律,会将影长与相似结合起来进行计算

在太阳光的照射下,不同时刻,物体影子的长短也不一样,早晚影子长,中午影子短。(3)平行投影与视图之间的关系

视图实际上就是该物体在某一平行光线下的投影。3、灯光与影子

(1)中心投影的概念及应用,区别平行投影与中心投影从一点发出的光线形成的投影称为中心投影。(2)视点、视线与盲区的概念

眼睛的位置称为视点;由视点发出的线称为视线;眼睛看不到的地方称为盲区。

第五章反比例函数

1、反比例函数

(1)反比例函数的概念

一般地,如果两个变量x,y之间的关系可以表示成y=函数。反比例函数的自变量x不能为0。(2)掌握求反比例函数的解析式的方法

将一组x,y的值代入解析式中确定k的值即可。

kx的形式,那么称y是x的反比例2、反比例函数的图象与性质(1)反比例函数图象的画法

一般采用描点法:先列表,再描点,再连线。

(2)反比例函数的图象及性质,其表达式与图象的关系,函数值大小的比较(表5-1)3、反比例函数的应用

(1)用反比例函数解决实际问题的一般思路

1、根据问题情境,设出所求的反比例函数表达式;

2、由问题中的已知数据,代入所求表达式,列出方程(或方程组),求出方程的解,确定出待定系数的值,从而确定函数表达式;3、根据函数表达式,去解决实际问题。

(2)反比例函数与正比例函数的区别及综合应用(表5-1)

表5-1

友情提示:本文中关于《北师大版九年数学知识点总结》给出的范例仅供您参考拓展思维使用,北师大版九年数学知识点总结:该篇文章建议您自主创作。

来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。


北师大版九年数学知识点总结》由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
链接地址:http://www.bsmz.net/gongwen/472479.html
相关文章