八年级数学上册知识点总结
八年级数学上册知识点总结
第一章勾股定理
定义:如果直角三角形两条直角边分别为a,b,斜边为c,即直角三角形两直角边的平方和等于斜边的平方。
判定:如果三角形的三边长a,b,c满足a+b=c,那么这个三角形是直角三角形。定义:满足a+b=c的三个正整数,称为勾股数。第二章实数
定义:任何有限小数或无限循环小数都是有理数。无限不循环小数叫做无理数(有理数总可以用有限小数或无限循环小数表示)
一般地,如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。特别地,我们规定0的算术平方根是0。
一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根)一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。
一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。正数的立方根是正数;0的立方根是0;负数的立方根是负数。求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。有理数和无理数统称为实数,即实数可以分为有理数和无理数。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。即实数和数轴上的点是一一对应的。
在数轴上,右边的点表示的数比左边的点表示的数大。第五章位置的确定
位置表示方法:方位角加距离;坐标;经纬度
定义:在平面内,两条互相垂直且有公共原点的书轴组成平面直角坐标系。
通常,两条数轴分别至于水平位置与铅直位置,取向右与向上方向分别为两条数轴的正方向。水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴和y统称坐标轴,它们的公共原点O称为直角坐标系的原点。
图形随坐标变化:向上/下/左/右平移X个单位长度、横向/纵向拉长X倍、横向/纵向压缩X倍、放大/缩小了X倍、关于x/y轴成轴对称、关于原点O成中心对称第六章一次函数
定义:一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中是x自变量,y是因变量。
若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。
把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系中描出它的对应点,所有这些点组成的图形叫做该函数的图象。正比例函数y=kx的图象是经过原点(0,0)的一条直线。在一次函数y=kx+b中,
当k>0时,的值随值的增大而增大;当k适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。解二元一次方程组的基本思路是“消元”把“二元”变为“一元”。以一个未知数代另一个未知数的解法称为代入消元法,简称代入法。通过两式加减消去其中一个未知数的解法称做加减消元法,简称加减法。第八章数据的代表
定义:一般地,对于n个数X1,X2,Xn,我们把1/n(X1+X2++Xn)叫做这个数的算术平均数,简称平均数,记为X。
为A的三项测试成绩的加权平均数。
一般地,个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数,一组数据出现次数最多的那个数据叫做这组数据的众数。
扩展阅读:苏教版数学八年级上册知识点总结
苏教版《数学》(八年级上册)知识点总结
第一章轴对称图形
轴对称图形线段角等腰三角形轴对称的性质等腰梯形轴对称的应用轴对称设计轴对称图案第二章勾股定理与平方根
一.勾股定理
1、勾股定理
直角三角形两直角边a,b的平方和等于斜边c的平方,即abc2、勾股定理的逆定理
如果三角形的三边长a,b,c有关系abc,那么这个三角形是直角三角形。3、勾股数:满足abc的三个正整数,称为勾股数。
222222222二、实数的概念及分类
1、实数的分类
正有理数
有理数零有限小数和无限循环小数实数负有理数
正无理数
无理数无限不循环小数负无理数
2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如7,32等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如(3)有特定结构的数,如0.1010010001等;(4)某些三角函数值,如sin60等
oπ3+8等;
三、平方根、算数平方根和立方根
1、算术平方根:一般地,如果一个正数x的平方等于a,即x=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。
表示方法:记作“a”,读作根号a。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。
表示方法:正数a的平方根记做“a”,读作“正、负根号a”。
2性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
开平方:求一个数a的平方根的运算,叫做开平方。注意a的双重非负性:
a03、立方根
一般地,如果一个数x的立方等于a,即x3=a那么这个数x就叫做a的立方根(或三次方根)。
表示方法:记作3a
性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。注意:3a3a,这说明三次根号内的负号可以移到根号外面。
a0四、实数大小的比较
1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
2、实数大小比较的几种常用方法
(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。(2)求差比较:设a、b是实数,
ab0ab,ab0ab,ab0ab(3)求商比较法:设a、b是两正实数,1ab;baab1ab;ab1ab;
(4)绝对值比较法:设a、b是两负实数,则abab。(5)平方法:设a、b是两负实数,则a2b2ab。
五、实数的运算
(1)六种运算:加、减、乘、除、乘方、开方
(2)实数的运算顺序
先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。(3)运算律
加法交换律abba
加法结合律(ab)ca(bc)乘法交换律abba乘法结合律(ab)ca(bc)乘法对加法的分配律a(bc)abac
第三章中心对称图形(一)
一、平移
1、定义
在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移。2、性质
平移前后两个图形是全等图形,对应点连线平行且相等,对应线段平行且相等,对应角相等。
二、旋转
1、定义
在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。
2、性质
旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角等于旋转角。
三、四边形的相关概念
1、四边形
在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。
2、四边形具有不稳定性
3、四边形的内角和定理及外角和定理
四边形的内角和定理:四边形的内角和等于360°。四边形的外角和定理:四边形的外角和等于360°。
推论:多边形的内角和定理:n边形的内角和等于(n2)180°;多边形的外角和定理:任意多边形的外角和等于360°。6、设多边形的边数为n,则多边形的对角线共有
n(n3)2条。从n边形的一个顶点出
发能引(n-3)条对角线,将n边形分成(n-2)个三角形。
四.平行四边形
1、平行四边形的定义
两组对边分别平行的四边形叫做平行四边形。2、平行四边形的性质
(1)平行四边形的对边平行且相等。
(2)平行四边形相邻的角互补,对角相等
(3)平行四边形的对角线互相平分。
(4)平行四边形是中心对称图形,对称中心是对角线的交点。
常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。
(2)推论:夹在两条平行线间的平行线段相等。
3、平行四边形的判定
(1)定义:两组对边分别平行的四边形是平行四边形(2)定理1:两组对角分别相等的四边形是平行四边形(3)定理2:两组对边分别相等的四边形是平行四边形(4)定理3:对角线互相平分的四边形是平行四边形
(5)定理4:一组对边平行且相等的四边形是平行四边形
4、两条平行线的距离
两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
平行线间的距离处处相等。5、平行四边形的面积
S平行四边形=底边长×高=ah
五、矩形
1、矩形的定义
有一个角是直角的平行四边形叫做矩形。2、矩形的性质
(1)矩形的对边平行且相等(2)矩形的四个角都是直角
(3)矩形的对角线相等且互相平分
(4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。
3、矩形的判定
(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积S矩形=长×宽=ab
六、菱形
1、菱形的定义
有一组邻边相等的平行四边形叫做菱形
2、菱形的性质
(1)菱形的四条边相等,对边平行(2)菱形的相邻的角互补,对角相等
(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角
(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。
3、菱形的判定
(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形
(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积
S菱形=底边长×高=两条对角线乘积的一半
七.正方形
1、正方形的定义
有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。2、正方形的性质
(1)正方形四条边都相等,对边平行
(2)正方形的四个角都是直角
(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形既是中心对称图形又是轴对称图形;对称中心是对角线的交点;对称轴有四条,是对角线所在的直线和对边中点连线所在的直线。
3、正方形的判定
判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证它是菱形。先证它是菱形,再证它是矩形。4、正方形的面积
设正方形边长为a,对角线长为bS正方形=a2b22
八、梯形
(一)1、梯形的相关概念
一组对边平行而另一组对边不平行的四边形叫做梯形。
梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。梯形中不平行的两边叫做梯形的腰。梯形的两底的距离叫做梯形的高。
2、梯形的判定
(1)定义:一组对边平行而另一组对边不平行的四边形是梯形。(2)一组对边平行且不相等的四边形是梯形。
(二)直角梯形的定义:一腰垂直于底的梯形叫做直角梯形。一般地,梯形的分类如下:一般梯形
梯形直角梯形特殊梯形
等腰梯形(三)等腰梯形1、等腰梯形的定义
两腰相等的梯形叫做等腰梯形。2、等腰梯形的性质
(1)等腰梯形的两腰相等,两底平行。
(2)等腰梯形同一底上的两个角相等,同一腰上的两个角互补。
(3)等腰梯形的对角线相等。
(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。3、等腰梯形的判定
(1)定义:两腰相等的梯形是等腰梯形
(2)定理:在同一底上的两个角相等的梯形是等腰梯形
(3)对角线相等的梯形是等腰梯形。(选择题和填空题可直接用)(四)梯形的面积(1)如图,S梯形ABCD12(CDAB)DE
(2)梯形中有关图形的面积:①SABDSBAC;②SAODSBOC;③SADCSBCD八、中心对称图形1、定义
在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
2、性质
(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。3、判定
如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
第四章数量、位置的变化
一、在平面内,确定物体的位置一般需要两个数据。二、平面直角坐标系及有关概念1、平面直角坐标系
在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。3、点的坐标的概念
对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当ab时,(a,b)和(b,a)是两个不同点的坐标。
平面内点的与有序实数对是一一对应的。4、不同位置的点的坐标的特征(1)、各象限内点的坐标的特征点P(x,y)在第一象限x0,y0
点P(x,y)在第二象限x0,y0点P(x,y)在第三象限x0,y0点P(x,y)在第四象限x0,y0(2)、坐标轴上的点的特征
点P(x,y)在x轴上y0,x为任意实数点P(x,y)在y轴上x0,y为任意实数
点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)即原点(3)、两条坐标轴夹角平分线上点的坐标的特征
点P(x,y)在第一、三象限夹角平分线(直线y=x)上x与y相等点P(x,y)在第二、四象限夹角平分线上x与y互为相反数(4)、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。位于平行于y轴的直线上的各点的横坐标相同。(5)、关于x轴、y轴或原点对称的点的坐标的特征
点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)
点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y)
点P与点p’关于原点对称横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)
(6)、点到坐标轴及原点的距离
点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x轴的距离等于y(2)点P(x,y)到y轴的距离等于x(3)点P(x,y)到原点的距离等于x2y2三、坐标变化与图形变化的规律:
坐标(x,y)的变化x×a或y×ax×a,y×ax×(-1)或y×(-1)x×(-1),y×(-1)x+a或y+ax+a,y+a图形的变化被横向或纵向拉长(压缩)为原来的a倍放大(缩小)为原来的a倍关于y轴或x轴对称关于原点成中心对称沿x轴或y轴平移a个单位沿x轴平移a个单位,再沿y轴平移a个单第五章一次函数
一、函数:
一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。二、自变量取值范围
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。三、函数的三种表示法
(1)关系式(解析)法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。(3)图象法
用图象表示函数关系的方法叫做图象法。四、由函数关系式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。五、正比例函数和一次函数1、正比例函数和一次函数的概念
一般地,若两个变量x,y间的关系可以表示成ykxb(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。
特别地,当一次函数ykxb中的b=0时(即ykx)(k为常数,k0),称y是x的正比例函数。
2、一次函数的图像:所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:
一次函数ykxb的图像是经过点(0,b)的直线;正比例函数ykx的图像是经过原点(0,0)的直线。
k的符号b的符号函数图像yb>00xyb0xyb0时,图像经过第一、三象限,y随x的增大而增大;(2)当k0时,y随x的增大而增大(2)当k(1)平均数:一般地,对于n个数x1,x2,,xn,我们把个数的算术平均数,简称平均数,记为x。
(2)加权平均数:
1n(x1x2xn)叫做这n
3、众数
一组数据中出现次数最多的那个数据叫做这组数据的众数。
4、中位数
一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
友情提示:本文中关于《八年级数学上册知识点总结》给出的范例仅供您参考拓展思维使用,八年级数学上册知识点总结:该篇文章建议您自主创作。
来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。