荟聚奇文、博采众长、见贤思齐
当前位置:公文素材库 > 计划总结 > 工作总结 > 化学选修三知识点总结

化学选修三知识点总结

网站:公文素材库 | 时间:2019-05-27 19:45:12 | 移动端:化学选修三知识点总结

化学选修三知识点总结

化学选修三知识点总结

第一章原子结构与性质.

一、认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义.1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小.电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q.原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7.2.(构造原理)

了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布.

(1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子.(2).原子核外电子排布原理.①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道.②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子.③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同.洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr[Ar]3d54s1、29Cu[Ar]3d104s1.(3).掌握能级交错图和1-36号元素的核外电子排布式.①根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序。②根据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高。基态原子核外电子的排布按能量由低到高的顺序依次排布。3.元素电离能和元素电负性

第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的能量叫做第一电离能。常用符号I1表示,单位为kJ/mol。(1).原子核外电子排布的周期性.

随着原子序数的增加,元素原子的外围电子排布呈现周期性的变化:每隔一定数目的元素,元素原子的外围电子排布重复出现从ns1到ns2np6的周期性变化.(2).元素第一电离能的周期性变化.

随着原子序数的递增,元素的第一电离能呈周期性变化:★同周期从左到右,第一电离能有逐渐增大的趋势,稀有气体的第一电离能最大,碱金属的第一电离能最小;★同主族从上到下,第一电离能有逐渐减小的趋势.说明:①同周期元素,从左往右第一电离能呈增大趋势。电子亚层结构为全满、半满时较相邻元素要大即第ⅡA族、第ⅤA族元素的第一电离能分别大于同周期相邻元素。Be、N、Mg、P

②.元素第一电离能的运用:

a.电离能是原子核外电子分层排布的实验验证.

b.用来比较元素的金属性的强弱.I1越小,金属性越强,表征原子失电子能力强弱.(3).元素电负性的周期性变化.

元素的电负性:元素的原子在分子中吸引电子对的能力叫做该元素的电负性。

随着原子序数的递增,元素的电负性呈周期性变化:同周期从左到右,主族元素电负性逐渐增大;同一主族从上到下,元素电负性呈现减小的趋势.电负性的运用:

a.确定元素类型(一般>1.8,非金属元素;1.7,离子键;键,还有一类特殊的共价键-配位键.(2).共价键三参数.键能键长概念对分子的影响拆开1mol共价键所吸收的能量(单位:键能越大,键越牢固,分子越稳定kJ/mol)成键的两个原子核间的平均距离(单位:键越短,键能越大,键越牢固,分子越稳定10-10米)键角分子中相邻键之间的夹角(单位:度)键角决定了分子的空间构型共价键的键能与化学反应热的关系:反应热=所有反应物键能总和-所有生成物键能总和.3.了解极性键和非极性键,了解极性分子和非极性分子及其性质的差异.(1)共价键:原子间通过共用电子对形成的化学键.(2)键的极性:

极性键:不同种原子之间形成的共价键,成键原子吸引电子的能力不同,共用电子对发生偏移.

非极性键:同种原子之间形成的共价键,成键原子吸引电子的能力相同,共用电子对不发生偏移.

(3)分子的极性:①极性分子:正电荷中心和负电荷中心不相重合的分子.非极性分子:正电荷中心和负电荷中心相重合的分子.②分子极性的判断:分子的极性由共价键的极性及分子的空间构型两个方面共同决定.非极性分子和极性分子的比较形成原因存在的共价键分子内原子排列分子类型分子形状AA2ABABAABAA4AB3AB3AB4AB3CAB2C2直线

3

非极性分子非极性键或极性键对称键角键的极性分子极性180°≠180°60°≠120°≠109°28′≠109°28′非极性极性极性极性非极性极性极性极性极性极性非极性非极性极性非极性极性非极性非极性极性非极性极性极性极性键不对称代表物He、NeH2、O2HCl、NOCO2、CS2H2O、SO2P4BF3、SO3NH3、NCl3CH4、CCl4CH3Cl、CHCl3CH2Cl2极性分子整个分子的电荷分布均匀,对称整个分子的电荷分布不均匀、不对称4.分子的空间立体结构(记住)常见分子的类型与形状比较球形直线形直线形直线形V形正四面体形三角锥形平面三角形120°正四面体形109°28′四面体形四面体形三角形V形四面体三角锥V形H2O5.了解原子晶体的特征,能描述金刚石、二氧化硅等原子晶体的结构与性质的关系.

(1).原子晶体:所有原子间通过共价键结合成的晶体或相邻原子间以共价键相结合而形成空间立体网状结构的晶体.

(2).典型的原子晶体有金刚石(C)、晶体硅(Si)、二氧化硅(SiO2).

金刚石是正四面体的空间网状结构,最小的碳环中有6个碳原子,每个碳原子与周围四个碳原子形成四个共价键;晶体硅的结构与金刚石相似;二氧化硅晶体是空间网状结构,最小的环中有6个硅原子和6个氧原子,每个硅原子与4个氧原子成键,每个氧原子与2个硅原子成键.(3).共价键强弱和原子晶体熔沸点大小的判断:原子半径越小,形成共价键的键长越短,共价键的键能越大,其晶体熔沸点越高.如熔点:金刚石>碳化硅>晶体硅.6.理解金属键的含义,能用金属键的自由电子理论解释金属的一些物理性质.知道金属晶体的基本堆积方式,了解常见金属晶体的晶胞结构(晶体内部空隙的识别、与晶胞的边长等晶体结构参数相关的计算不作要求).

(1).金属键:金属离子和自由电子之间强烈的相互作用.

请运用自由电子理论解释金属晶体的导电性、导热性和延展性.

晶体中的微粒导电性导热性延展性金属离子和自由电子自由电子在外加电场的作自由电子与金属离子晶体中各原子层相对滑用下发生定向移动碰撞传递热量动仍保持相互作用(2)①金属晶体:通过金属键作用形成的晶体.

②金属键的强弱和金属晶体熔沸点的变化规律:阳离子所带电荷越多、半径越小,金属键越强,熔沸点越高.如熔点:NaK>Rb>Cs.金属键的强弱可以用金属的原子7.了解简单配合物的成键情况(配合物的空间构型和中心原子的杂化类型不作要求).概念表示条件共用电子对由一个原子单方向AB其中一个原子必须提供孤对电提供给另一原子共用所形成的电子对给予体电子对接受体子,另一原子必须能接受孤对电共价键。子的轨道。(1)配位键:一个原子提供一对电子与另一个接受电子的原子形成的共价键.即成键的两个原子一方提供孤对电子,一方提供空轨道而形成的共价键.(2)①.配合物:由提供孤电子对的配位体与接受孤电子对的中心原子(或离子)以配位键形成的化合物称配合物,又称络合物.②形成条件:a.中心原子(或离子)必须存在空轨道.b.配位体具有提供孤电子对的原子.③配合物的组成.④配合物的性质:配合物具有一定的稳定性.配合物中配位键越强,配合物越稳定.当作为中心原子的金属离子相同时,配合物的稳定性与配体的性质有关.三.分子间作用力与物质的性质.

1.知道分子间作用力的含义,了解化学键和分子间作用力的区别.

分子间作用力:把分子聚集在一起的作用力.分子间作用力是一种静电作用,比化学键弱得多,包括范德华力和氢键.

范德华力一般没有饱和性和方向性,而氢键则有饱和性和方向性.

2.知道分子晶体的含义,了解分子间作用力的大小对物质某些物理性质的影响.

(1).分子晶体:分子间以分子间作用力(范德华力、氢键)相结合的晶体.典型的有冰、干冰.(2).分子间作用力强弱和分子晶体熔沸点大小的判断:组成和结构相似的物质,相对分子质量越大,分子间作用力越大,克服分子间引力使物质熔化和气化就需要更多的能量,熔、沸点越高.但存在氢键时分子晶体的熔沸点往往反常地高.

3.了解氢键的存在对物质性质的影响(对氢键相对强弱的比较不作要求).

NH3、H2O、HF中由于存在氢键,使得它们的沸点比同族其它元素氢化物的沸点反常地高.影响物质的性质方面:增大溶沸点,增大溶解性

表示方法:XH……Y(NOF)一般都是氢化物中存在.

4.了解分子晶体与原子晶体、离子晶体、金属晶体的结构微粒、微粒间作用力的区别.四、几种比较

1、离子键、共价键和金属键的比较化学键类型离子键共价键金属键阴、阳离子间通原子间通过共用电子对所形金属阳离子与自由电子通过相互作用而概念过静电作用所成的化学键形成的化学键形成的化学键成键微粒成键性质阴阳离子静电作用原子共用电子对非金属与非金属元素HCl、H2SO4非极性键同种元素原子形成的共价键相同不偏向任何一方电中性由同种非金属元素组成金属阳离子和自由电子电性作用金属内部Fe、Mg极性键不同种元素原子形成的共价键,共用电子对发生偏移不同偏向吸引电子能力强的原子显电性由不同种非金属元素组成活泼金属与活形成条件泼的非金属元素实例NaCl、MgO概念原子吸引电子能力共用电子对成键原子电性形成条件2、非极性键和极性键的比较

3.物质溶沸点的比较(重点)

(1)不同类晶体:一般情况下,原子晶体>离子晶体>分子晶体

(2)同种类型晶体:构成晶体质点间的作用大,则熔沸点高,反之则小。①离子晶体:离子所带的电荷数越高,离子半径越小,则其熔沸点就越高。②分子晶体:对于同类分子晶体,式量越大,则熔沸点越高。③原子晶体:键长越小、键能越大,则熔沸点越高。(3)常温常压下状态①熔点:固态物质>液态物质②沸点:液态物质>气态物质

扩展阅读:【人教版】高中化学选修3知识点总结

第一章原子结构与性质

一.原子结构

1.能级与能层

2.原子轨道

3.原子核外电子排布规律

⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按右图顺序填入核外电子运动轨道(能级),叫做构造原理。

能级交错:由构造原理可知,电子先进入4s轨道,后进入3d轨道,这种现象叫能级交错。

说明:构造原理并不是说4s能级比3d能级能量低(实际上4s能级比3d能级能量高),而是指这样顺序填充电子可以使整个原子的能量最低。也就是说,整个原子的能量不能机械地看做是各电子所处轨道的能量之和。

(2)能量最低原理

现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。

构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。

(3)泡利(不相容)原理:基态多电子原子中,不可能同时存在4个量子数完全相同的电子。换言之,一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利(Pauli)原理。

(4)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特(Hund)规则。比如,p3的轨道式为↑

↑↑

↓↓↓

,而↑↓↑

洪特规则特例:当p、d、f轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。即p0、d0、f0、p3、d5、f7、p6、d10、f14时,是较稳定状态。

前36号元素中,全空状态的有4Be2s22p0、12Mg3s23p0、20Ca4s23d0;半充满状态的有:7N2s22p3、15P3s23p3、24Cr3d54s1、25Mn3d54s2、33As4s24p3;全充满状态的有10Ne2s22p6、18Ar3s23p6、29Cu3d104s1、30Zn3d104s2、36Kr4s24p6。

4.基态原子核外电子排布的表示方法(1)电子排布式

①用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K:1s22s22p63s23p64s1。

②为了避免电子排布式书写过于繁琐,把内层电子达到稀有气体元素原子结构的部分以相应稀有气体的元素符号外加方括号表示,例如K:[Ar]4s1。

(2)电子排布图(轨道表示式)

每个方框或圆圈代表一个原子轨道,每个箭头代表一个电子。如基态硫原子的轨道表示式为

二.原子结构与元素周期表1.原子的电子构型与周期的关系

(1)每周期第一种元素的最外层电子的排布式为ns1。每周期结尾元素的最外层电子排布式除He为1s2外,其余为ns2np6。He核外只有2个电子,只有1个s轨道,还未出现p轨道,所以第一周期结尾元素的电子排布跟其他周期不同。

(2)一个能级组最多所容纳的电子数等于一个周期所包含的元素种类。但一个能级组不一定全部是能量相同的能级,而是能量相近的能级。

2.元素周期表的分区(1)根据核外电子排布

①分区

②各区元素化学性质及原子最外层电子排布特点

③若已知元素的外围电子排布,可直接判断该元素在周期表中的位置。如:某元素的外围电子排布为4s24p4,由此可知,该元素位于p区,为第四周期ⅥA族元素。即最大能层为其周期数,最外层电子数为其族序数,但应注意过渡元素(副族与第Ⅷ族)的最大能层为其周期数,外围电子数应为其纵列数而不是其族序数(镧系、锕系除外)。

三.元素周期律1.电离能、电负性

(1)电离能是指气态原子或离子失去1个电子时所需要的最低能量,第一电离能是指电中性基态原子失去1个电子转化为气态基态正离子所需要的最低能量。第一电离能数值越小,原子越容易失去1个电子。在同一周期的元素中,碱金属(或第ⅠA族)第一电离能最小,稀有气体(或0族)第一电离能最大,从左到右总体呈现增大趋势。同主族元素,从上到下,第一电离能逐渐减小。同一原子的第二电离能比第一电离能要大

(2)元素的电负性用来描述不同元素的原子对键合电子吸引力的大小。以氟的电负性为4.0,锂的电负性为1.0作为相对标准,得出了各元素的电负性。电负性的大小也可以作为判断金属性和非金属性强弱的尺度,金属的电负性一般小于1.8,非金属的电负性一般大于1.8,而位于非金属三角区边界的“类金属”的电负性在1.8左右。它们既有金属性,又有非金属性。

(3)电负性的应用

①判断元素的金属性和非金属性及其强弱

②金属的电负性一般小于1.8,非金属的电负性一般大于1.8,而位于非金属三角区边界的“类金属”(如锗、锑等)的电负性则在1.8左右,它们既有金属性,又有非金属性。

③金属元素的电负性越小,金属元素越活泼;非金属元素的电负性越大,非金属元素越活泼。④同周期自左到右,电负性逐渐增大,同主族自上而下,电负性逐渐减小。2.原子结构与元素性质的递变规律

3.对角线规则

在元素周期表中,某些主族元素与右下方的主族元素的有些性质是相似的,如

第二章分子结构与性质

课标要求

1.了解共价键的主要类型键和键,能用键长、键能和键角等说明简单分子的某些性质

2.了解杂化轨道理论及常见的杂化轨道类型(sp、sp2、sp3),能用价层电子对互斥理论或者杂化轨道理论推测常见的简单分子或离子的空间结构。3.了解简单配合物的成键情况。4.了解化学键合分子间作用力的区别。

5.了解氢键的存在对物质性质的影响,能列举含氢键的物质。要点精讲一.共价键

1.共价键的本质及特征

共价键的本质是在原子之间形成共用电子对,其特征是具有饱和性和方向性。2.共价键的类型

①按成键原子间共用电子对的数目分为单键、双键、三键。②按共用电子对是否偏移分为极性键、非极性键。

③按原子轨道的重叠方式分为σ键和π键,前者的电子云具有轴对称性,后者的电子云具有镜像对称性。3.键参数

①键能:气态基态原子形成1mol化学键释放的最低能量,键能越大,化学键越稳定。②键长:形成共价键的两个原子之间的核间距,键长越短,共价键越稳定。③键角:在原子数超过2的分子中,两个共价键之间的夹角。④键参数对分子性质的影响

键长越短,键能越大,分子越稳定.

4.等电子原理[来源:学 科 网]

原子总数相同、价电子总数相同的分子具有相似的化学键特征,它们的许多性质相近。二.分子的立体构型

1.分子构型与杂化轨道理论杂化轨道的要点

当原子成键时,原子的价电子轨道相互混杂,形成与原轨道数相等且能量相同的杂化轨道。杂化轨道数不同,轨道间的夹角不同,形成分子的空间形状不同。

2分子构型与价层电子对互斥模型

价层电子对互斥模型说明的是价层电子对的空间构型,而分子的空间构型指的是成键电子对空间构型,不包括孤对电子。

(1)当中心原子无孤对电子时,两者的构型一致;(2)当中心原子有孤对电子时,两者的构型不一致。

3.配位化合物

(1)配位键与极性键、非极性键的比较

(2)配位化合物

①定义:金属离子(或原子)与某些分子或离子(称为配体)以配位键结合形成的化合物。②组成:如[Ag(NH3)2]OH,中心离子为Ag+,配体为NH3,配位数为2。三.分子的性质1.分子间作用力的比较2.分子的极性

(1)极性分子:正电中心和负电中心不重合的分子。(2)非极性分子:正电中心和负电中心重合的分子。3.溶解性

(1)“相似相溶”规律:非极性溶质一般能溶于非极性溶剂,

极性溶质一般能溶于极性溶剂.若存在氢键,则溶剂和溶质之间的氢键作用力越大,溶解性越好。(2)“相似相溶”还适用于分子结构的相似性,如乙醇和水互溶,而戊醇在水中的溶解度明显减小.4.手性

具有完全相同的组成和原子排列的一对分子,如左手和右手一样互为镜像,在三维空间里不能重叠的现象。5.无机含氧酸分子的酸性

无机含氧酸可写成(HO)mROn,如果成酸元素R相同,则n值越大,R的正电性越高,使ROH中O的电子向R偏移,在水分子的作用下越易电离出H+,酸性越强,如HClO<HClO2<HClO3<HClO4

第三章晶体结构与性质

一.晶体常识1.晶体与非晶体比较

2.获得晶体的三条途径

①熔融态物质凝固。②气态物质冷却不经液态直接凝固(凝华)。③溶质从溶液中析出。3.晶胞

晶胞是描述晶体结构的基本单元。晶胞在晶体中的排列呈“无隙并置”。4.晶胞中微粒数的计算方法均摊法

如某个粒子为n个晶胞所共有,则该粒子有1/n属于这个晶胞。中学中常见的晶胞为立方晶胞

立方晶胞中微粒数的计算方法如下:

注意:在使用“均摊法”计算晶胞中粒子个数时要注意晶胞的形状

二.四种晶体的比较

2.晶体熔、沸点高低的比较方法

(1)不同类型晶体的熔、沸点高低一般规律:原子晶体>离子晶体>分子晶体。

金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。(2)原子晶体

由共价键形成的原子晶体中,原子半径小的键长短,键能大,晶体的熔、沸点高.如熔点:金刚石>碳化硅>硅

(3)离子晶体

一般地说,阴阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强,相应的晶格能大,其晶体的熔、沸点就越高。

(4)分子晶体

①分子间作用力越大,物质的熔、沸点越高;具有氢键的分子晶体熔、沸点反常的高。②组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高。

③组成和结构不相似的物质(相对分子质量接近),分子的极性越大,其熔、沸点越高。④同分异构体,支链越多,熔、沸点越低。(5)金属晶体

金属离子半径越小,离子电荷数越多,其金属键越强,金属熔、沸点就越高。三.几种典型的晶体模型

友情提示:本文中关于《化学选修三知识点总结》给出的范例仅供您参考拓展思维使用,化学选修三知识点总结:该篇文章建议您自主创作。

来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。


化学选修三知识点总结》由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
链接地址:http://www.bsmz.net/gongwen/473725.html
相关文章