数学九年级上期知识点总结(全)
第二十一章:二次根式
一、
二次根式
1、二次根式:形如aa0的式子;2、aa0是一个非负数;3、必须记牢:a2aa0;a2aa0.
4、代数式:我们学过的式子,都是用基本运算符号(加减乘除、乘方和开方)把数和表示
数的字母连接起来的式子。二、二次根式的乘除
1、二次根式的乘法规定:ababa0,b0.2、二次根式的除法规定:
aaa0,b>0.bb3、最简二次根式的特点:
1)被开方数不含分母;
2)被开方数中不含能开得尽方的因数或因式.三、二次根式的加减1、二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式
进行合并。2、阅读与思考的重点
第二十二章:一元二次方程
一、一元二次方程1、定义:等号两边都是等式,只含有一个未知数(一元),并且未知数的最高指数是2(二
次)的方程。2、根:一元二次方程的解就是一元二次方程的根。3、一般形式:axbxc0a0
2二、解一元二次方程及其方法1、配方法:
1)如果方程可化为x2p或mxnpp0的形式,那么可得xp或
2(注:目的在于“降次”解方程容易)mxnp。
2)步骤:移项→左右两边加上需要项→组成平方→降次→解得根→再解一元一次方程
→得到最后的结果(一般是两个根)
3)方程的额二次项系数不是1时,为便于配方,可以让方程的各项除以二次项系数。2、公式法:
1)一般形式:axbxc0a0
21/4
2)根的判别式:b4ac;用“”表示,即b4ac。
22bb24ac3)求根公式:x;
2a4)公式法:运用求根公式,把各系数直接带入,可以避免繁杂的配方,直接得出根。3、因式分解法:
不用开方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次。4、解一元二次的基本思路:将二次方程化为一次方程,即降次。三、一元二次方程的根与系数的关系
1、由因式分解法可知方程:xx1xx20,展开后:x2x1x2xx1x20;
一次项系数:px1x2,常数项:qx1x2
两根的和、积与系数的关系可以为:x1x2p,x1x2q。
bb24ac2、一般形式:axbxc0a0,它的根是x;
2a2方程的两个根x1、x2和系数a,b,c的关系为:x1x2四、
实际问题与一元二次方程
bc,x1x2。aa第二十三章:旋转
一、图形的旋转
旋转、旋转中心、旋转角二、中心对称
关于这个点对称(中心对称)、对称中心、对称点、中心对称图形、关于原点对称的点坐标
第二十四章:圆
一、圆1、圆:一条线段绕着它的一个固定端点旋转一周,另一个端点移动的轨迹所形成的图形;2、圆心:固定的端点;3、半径:这条线段;4、弦:连接圆上任意两点的线段;5、直径:经过圆心的弦(最长的弦);6、圆弧:圆上任意两点间的部分,简称“弧”;7、半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都是半圆;8、等圆:能够重合的两个圆;9、等弧:能够互相重合的弧;二、垂直于弦的直径1、圆是轴对称图形,任何一条直径所在直线都是它的对称轴。
2/4
2、垂直于弦的直径平分弦,并且平分弦所对的两条弧。3、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。三、弧、弦、圆心角、圆周角1、圆心角:顶点在圆心的角;2、定理:在同圆与等圆中,相等的圆心角所对的弧相等,所对的弦也相等;3、推理:
在同圆与等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。4、圆周角:顶点在圆上,且两边与圆相交的角;5、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的
一半;6、推论:
半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径;7、圆内接多边形、多边形的外接圆
圆的内接四边形的对角互补8、如果三角形一条边上的中线等于这条边的一般,那么这个三角形是直角三角形四、点、直线、圆与圆的位置关系1、点和圆的位置关系:
点P在圆外dr;点P在圆上dr;点P在圆内dr.2、不在同一直线上的三个点确定一个圆3、外接圆:经过三角形的三个顶点可以作一个圆;圆心是三角形三条边垂直平分线的交点,
叫做三角形的外心。4、反证法的介绍5、直线和圆的位置关系:
直线l和⊙O相交dr;直线l和⊙O相切dr;直线l和⊙O相离dr.6、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线;7、切线的性质定理:圆的切线垂直于过切点的半径;8、切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连
线平分两条切线的夹角。9、内切圆:与三角形各边都相切的圆叫做三角形的内切圆;圆心是三角形三条角平分线的
交点,叫做三角形的内心。
10、相离、外离、内含、相切、外切、内切、相交、圆心距五、正多边形和圆:1、一个正多边形外接圆的圆心叫做这个正多边形的中心;2、外接圆的半径叫做正多边形的半径;3、正多边形每一边所对的圆心角叫做正多边形的中心角;4、中心到正多边形的一边的距离叫做正多边形的边心距。六、弧长和扇形面积:
3/4
1、弧长:lnR.1802、扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形;
S扇形nR1.S扇形lR.36023、母线:圆锥顶点和底面圆周上任意一点的线段;
第二十五章:概率初步
一、随机事件与概率
1、随机事件:在一定的条件下,可能发生也可能不发生的事件。2、概率:一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,成为随机
事件A发生的概率。记作:P(A)。3、如果一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包括其
中的m种结果,那么事件A发生的概率为:PA4、特别:
当A为必然事件时,P(A)=1;当A为不可能事件时,P(A)=0.二、用列举法求概率:列表法、树形图、
m,其中0PA1。n4/4
扩展阅读:人教版九年级数学上册知识点总结
人教版九年级数学上册知识点总结
第二十一章二次根式21.1二次根式
知识点一二次根式的概念(1)一般地,我们把形如
根。其中“
a(a≥0)的式子叫做二次根式。二次根式a的实质是一个非负数a的算术平方
”叫做二次根号。
(2)正确理解二次根式的概念,要把握以下几点:①二次根式是在形式上定义的,必须含有二次根号“
是二次根式。
②被开方数a必须是非负数,即a≥0.如
”的根指数为2,即“2”。如
4是二次根式,虽然4=2,但2不
3就不是二次根式,但式子(3)2是二次根式。
”,注意,不可误认为根指数是
③“”,一般省略根指数2,写作“
“1”或“0”。
提示:判断是不是二次根式,一看形式,二看数值,即形式上要有二次根号,被开方数要是非负数。知识点二二次根式的性质
(1)
a(a≥0)既是二次根式,又是非负数的算术平方根,所以它一定是非负数,即a≥(a≥
0),我们把这个性质叫做二次根式的非负性。(2)(
a)2=a(a≥0),这个性质可以正用,也可以逆用,正用时常用于二次根式的化简和计算,可
以去掉根号;逆用时可以把一个非负数写成完整平方数的形式,常用于多项式的因式分解。(3)
a2=a(a≥0),这个性质可以正用,也可以逆用,正用时用于二次根式的化简,即当被开方数能
化为完全平方数(式)时,就可以利用该性质去掉根号;逆用时可以把一个非负数化为一个二次根式。知识点三代数式
定义:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子,叫做代数式。
21.2二次根式的乘除
知识点一二次根式的乘法法则一般地,对二次根式的乘法规定:根指数不变。
知识点二积的算术平方根的性质
ab=ab(a≥0,b≥0),即二次根式相乘,把被开方数相乘,
ab=ab(a≥0,b≥0),积的算术平方根等于积中各个因式的算术平方根的积。
知识点三二次根式的除法法则一般地,对二次根式的除法规定:根指数不变。
知识点四商的算术平方根的性质
ab=
ab(a≥0,b>0),即两个二次根式相除,把被开方数相除,
ab=
ab(a≥0,b>0),即商的算术平方根等于被除式的算术平方根除以除式的算术平方根。
知识点五最简二次根式必须满足以下两个条件:
(1)(2)
被开方数不含分母;
被开方数中不含能开得尽方的因数或因式。
21.3二次根式的加减
知识点一二次根式的加减
二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式合并,二次根式加减法的实质是将被开方数相同的二次根式合并,合并时只把系数相加减,根指数和被开方数不变。知识点二二次根式的混合运算(1)
二次根式的混合运算顺序与整式的混合运算顺序相同:先乘方开方,再乘除,最后加减,有括号的先算括号里面的。
(2)
在二次根式的运算中乘法法则和乘法公式仍然适用。
22.1一元二次方程
知识点一一元二次方程的定义
等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。注意一下几点:
①只含有一个未知数;②未知数的最高次数是2;③是整式方程。知识点二一元二次方程的一般形式一般形式:ax
2+bx+c=0(a≠0).其中,ax2是二次项,a
是二次项系数;bx是一次项,b
是一次项系数;c是常数项。知识点三一元二次方程的根
使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。方程的解的定义是解方程过程中验根的依据。
22.2降次解一元二次方程22.2.1配方法
知识点一直接开平方法解一元二次方程(1)
如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。一般地,对于形如x=a(a≥0)的方程,根据平方根的定义可解得x1=
(2)
2a,x2=a.
直接开平方法适用于解形如x2=p或(mx+a)2=p(m≠0)形式的方程,如果p≥0,就可以利用直接开平方法。(3)用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。
(4)直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。
知识点二配方法解一元二次方程
通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。
配方法的一般步骤可以总结为:一移、二除、三配、四开。(1)(2)(3)(4)
把常数项移到等号的右边;方程两边都除以二次项系数;
方程两边都加上一次项系数一半的平方,把左边配成完全平方式;若等号右边为非负数,直接开平方求出方程的解。
22.2.2公式法
知识点一公式法解一元二次方程(1)
一般地,对于一元二次方程
ax2+bx+c=0(a≠0),如果
b2-4ac≥0,那么方程的两个根为
bx=
b2a24ac,这个公式叫做一元二次方程的求根公式,利用求根公式,我们可以由
一元二方程的系数a,b,c的值直接求得方程的解,这种解方程的方法叫做公式法。
(2)
一元二次方程求根公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0)的过程。
(3)
公式法解一元二次方程的具体步骤:
①方程化为一般形式:ax2+bx+c=0(a≠0),一般a化为正值②确定公式中a,b,c的值,注意符号;③求出b2-4ac的值;
④若b2-4ac≥0,则把a,b,c和b-4ac的值代入公式即可求解,若b2-4ac<0,则方程无实数根。知识点二一元二次方程根的判别式
式子b-4ac叫做方程ax+bx+c=0(a≠0)根的判别式,通常用希腊字母△表示它,即△=b-4ac.
△>0,方程ax+bx+c=0(a≠0)有两个不相等的实数根一元二次方程△=0,方程ax2+bx+c=0(a≠0)有两个相等的实数根根的判别式△<0,方程ax2+bx+c=0(a≠0)无实数根2
22222.2.3因式分解法
知识点一因式分解法解一元二次方程(1)
把一元二次方程的一边化为0,而另一边分解成两个一次因式的积,进而转化为求两个求一元一次方程的解,这种解方程的方法叫做因式分解法。
(2)
因式分解法的详细步骤:
①移项,将所有的项都移到左边,右边化为0;
②把方程的左边分解成两个因式的积,可用的方法有提公因式、平方差公式和完全平方公式;③令每一个因式分别为零,得到一元一次方程;④解一元一次方程即可得到原方程的解。知识点二用合适的方法解一元一次方程
方法名称理论依据适用范围形如x2=p或(mx+n)2=p(p≥0)所有一元二次方程所有一元二次方程一边为0,另一边易于分解成两个一次因式的积的一元二次方程。
直接开平方法平方根的意义配方法公式法因式分解法完全平方公式配方法当ab=0,则a=0或b=022.2.4一元二次方程的根与系数的关系
若一元二次方程x2+px+q=0的两个根为x1,x2,则有x1+x2=-p,x1x2=q.若一元二次方程a2x+bx+c=0(a≠0)有两个实数根x1,x2,则有x1+x2=,ba,x1x2=
ca22.3实际问题与一元二次方程
知识点一列一元二次方程解应用题的一般步骤:(1)(2)(3)(4)(5)(6)(1)
审:是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量以及它们之间的等量关系。设:是指设元,也就是设出未知数。
列:就是列方程,这是关键步骤,一般先找出能够表达应用题全部含义的一个相等含义,然后列代数式表示这个相等关系中的各个量,就得到含有未知数的等式,即方程。解:就是解方程,求出未知数的值。
验:是指检验方程的解是否保证实际问题有意义,符合题意。答:写出答案。数字问题
知识点二列一元二次方程解应用题的几种常见类型
三个连续整数:若设中间的一个数为x,则另两个数分别为x-1,x+1。三个连续偶数(奇数):若中间的一个数为x,则另两个数分别为x-2,x+2。
三位数的表示方法:设百位、十位、个位上的数字分别为a,b,c,则这个三位数是100a+10b+c.(2)增长率问题
设初始量为a,终止量为b,平均增长率或平均降低率为x,则经过两次的增长或降低后的等量关系为a(1x)2=b。(3)利润问题
利润问题常用的相等关系式有:①总利润=总销售价-总成本;②总利润=单位利润×总销售量;③利润=成本×利润率
(4)图形的面积问题
根据图形的面积与图形的边、高等相关元素的关系,将图形的面积用含有未知数的代数式表示出来,建立一元二次方程。
第二十三章旋转23.1图形的旋转
知识点一旋转的定义
在平面内,把一个平面图形绕着平面内某一点O转动一个角度,就叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角。
我们把旋转中心、旋转角度、旋转方向称为旋转的三要素。知识点二旋转的性质
旋转的特征:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等。理解以下几点:(1)
图形中的每一个点都绕旋转中心旋转了同样大小的角度。(2)对应点到旋转中心的距离相等,对应线段相等,对应角相等。(3)图形的大小和形状都没有发生改变,只改变了图形的位置。
知识点三利用旋转性质作图
旋转有两条重要性质:(1)任意一对对应点与旋转中心所连线段的夹角等于旋转角;(2)对应点到旋转中心的距离相等,它是利用旋转的性质作图的关键。步骤可分为:①连:即连接图形中每一个关键点与旋转中心;
②转:即把直线按要求绕旋转中心转过一定角度(作旋转角)
③截:即在角的另一边上截取关键点到旋转中心的距离,得到各点的对应点;④接:即连接到所连接的各点。
23.2中心对称
知识点一中心对称的定义
中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。注意以下几点:
中心对称指的是两个图形的位置关系;只有一个对称中心;绕对称中心旋转180°两个图形能够完全重合。知识点二作一个图形关于某点对称的图形
要作出一个图形关于某一点的成中心对称的图形,关键是作出该图形上关键点关于对称中心的对称点。最后将对称点按照原图形的形状连接起来,即可得出成中心对称图形。知识点三中心对称的性质有以下几点:(1)(2)(3)
关于中心对称的两个图形上的对应点的连线都经过对称中心,并且都被对称中心平分;关于中心对称的两个图形能够互相重合,是全等形;
关于中心对称的两个图形,对应线段平行(或共线)且相等。
知识点四中心对称图形的定义
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。知识点五关于原点对称的点的坐标
在平面直角坐标系中,如果两个点关于原点对称,它们的坐标符号相反,即点p(x,y)关于原点对称点为(-x,-y)。
第二十四章圆24.1圆24.1.1圆
知识点一圆的定义
圆的定义:第一种:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫作圆。固定的端点O叫作圆心,线段OA叫作半径。第二种:圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合。
比较圆的两种定义可知:第一种定义是圆的形成进行描述的,第二种是运用集合的观点下的定义,但是都说明确定了定点与定长,也就确定了圆。知识点二圆的相关概念(1)(2)
弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫作直径。
弧:圆上任意两点间的部分叫做圆弧,简称弧。圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
(3)(4)
等圆:等够重合的两个圆叫做等圆。
等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。
弦是线段,弧是曲线,判断等弧首要的条件是在同圆或等圆中,只有在同圆或等圆中完全重合的弧才是等弧,而不是长度相等的弧。
24.1.2垂直于弦的直径
知识点一圆的对称性
圆是轴对称图形,任何一条直径所在直线都是它的对称轴。知识点二垂径定理
(1)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。如图所示,直径为CD,AB是弦,且CD⊥AB,
CMABAM=BMD垂足为MAC=B
AD=BD垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧如上图所示,直径CD与非直径弦AB相交于点M,CD⊥ABAM=BMAC=BCAD=BD注意:因为圆的两条直径必须互相平分,所以垂径定理的推论中,被平分的弦必须不是直径,否则结论不成立。
24.1.3弧、弦、圆心角
知识点弦、弧、圆心角的关系(1)
弦、弧、圆心角之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
(2)
在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余的各组量也相等。
(3)
注意不能忽略同圆或等圆这个前提条件,如果丢掉这个条件,即使圆心角相等,所对的弧、弦也不一定相等,比如两个同心圆中,两个圆心角相同,但此时弧、弦不一定相等。24.1.4圆周角
知识点一圆周角定理(1)
圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
(2)(3)
圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对弦是直径。圆周角定理揭示了同弧或等弧所对的圆周角与圆心角的大小关系。“同弧或等弧”是不能改为“同弦或等弦”的,否则就不成立了,因为一条弦所对的圆周角有两类。
知识点二圆内接四边形及其性质
圆内接多边形:如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆。
圆内接四边形的性质:圆内接四边形的对角互补。
24.2点、直线、圆和圆的位置关系24.2.1点和圆的位置关系
知识点一点与圆的位置关系
(1)(2)
点与圆的位置关系有:点在圆外,点在圆上,点在圆内三种。用数量关系表示:若设⊙O的半径是r,点P到圆的距离OP=d,则有:
点P在圆外d>r;点p在圆上d=r;点p在圆内d<r。知识点二过已知点作圆(1)
O1AO2
O3(2)
经过两点的圆(如点A、B)经过一个点的圆(如点A)
以点A外的任意一点(如点O)为圆心,以OA为半径作圆即可,如图,这样的圆可以作无数个。
以线段AB的垂直平分线上的任意一点(如点O)为圆心,以OA(或OB)为半径作圆即可,如图,这样的圆可以作无数个。
AB(3)
经过三点的圆
①经过在同一条直线上的三个点不能作圆
②不在同一条直线上的三个点确定一个圆,即经过不在同一条直线上的三个点可以作圆,且只能作一个
圆。如经过不在同一条直线上的三个点A、B、C作圆,作法:连接AB、BC(或AB、AC或BC、AC)并作它们的垂直平分线,两条垂直平分线相交于点O,以点O为圆心,以OA(或OB、OC)的长为半径作圆即可,如图,这样的圆只能作一个。
知识点三三角形的外接圆与外心(1)(2)
经过三角形三个顶点可以作一个圆,这个圆叫做三角形的外接圆。
外接圆的圆心是三角形三条边的垂直平分线的交点,叫做这个三角形的外心。
AOBC知识点四反证法(1)(2)
反证法:假设命题的结论不成立,经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立,这种证明命题的方法叫做反证法。反证法的一般步骤:
①假设命题的结论不成立;
②从假设出发,经过逻辑推理,推出或与定义,或与公理,或与定理,或与已知等相矛盾的结论;③由矛盾判定假设不正确,从而得出原命题正确。
24.2.2直线和圆的位置关系
知识点一直线与圆的位置关系(1)(2)
直线与圆的位置关系有:相交、相切、相离三种。直线与圆的位置关系可以用数量关系表示
若设⊙O的半径是r,直线l与圆心0的距离为d,则有:直线l和⊙O相交d<r;直线l和⊙O相切d=r;直线l和⊙O相离d>r。知识点二切线的判定和性质(1)(2)(3)
切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。切线的性质定理:圆的切线垂直于过切点的半径。
切线的其他性质:切线与圆只有一个公共点;切线到圆心的距离等于半径;经过圆心且垂直于切线的直线必过切点;必过切点且垂直于切线的直线必经过圆心。
知识点三切线长定理(1)(2)
切线长的定义:经过园外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长。切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
(3)
注意:切线和切线长是两个完全不同的概念,必须弄清楚切线是直线,是不能度量的;切线长是一条线段的长,这条线段的两个端点一个是在圆外一点,另一个是切点。
知识点四三角形的内切圆和内心
(1)三角形的内切圆定义:与三角形各边都相切的圆叫做三角形的内切圆。这个三角形叫做圆的外切三角形。
(2)三角形的内心:三角形内切圆的圆心叫做三角形的内心。
(3)注意:三角形的内心是三角形三条角平分线的交点,所以当三角形的内心已知时,过三角形的顶点和
内心的射线,必平分三角形的内角。
24.2.3圆和圆的位置关系
知识点一圆与圆的位置关系(1)
圆与圆的位置关系有五种:
①如果两个圆没有公共点,就说这两个圆相离,包括外离和内含两种;②如果两个圆只有一个公共点,就说这两个圆相切,包括内切和外切两种;③如果两个圆有两个公共点,就说这两个圆相交。(2)
圆与圆的位置关系可以用数量关系来表示:
若设两圆圆心之间的距离为d,两圆的半径分别是r1r2,且r1<r2,则有①两圆外离d>r1+r2②两圆外切d=r1+r2③两圆相交r2-r1<d<r1+r2④两圆内切d=r2-r1⑤两圆内含d<r2-r1
24.3正多边形和圆
知识点一正多边形的外接圆和圆的内接正多边形
正多边形与圆的关系非常密切,把圆分成n(n是大于2的自然数)等份,顺次连接各分点所得的多边形是这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。
正多边形的中心:一个正多边形的外接圆的圆心叫做这个正多边形的中心。正多边形的半径:外接圆的半径叫做正多边形的半径。
正多边形的中心角:正多边形每一条边所对的圆心角叫做正多边形的中心角。正多边形的边心距:中心到正多边形一边的距离叫做正多边形的边心距。知识点二正多边形的性质(1)(2)
正n边形的半径和边心距把正多边形分成2n个全等的直角三角形。
所有的正多边形都是轴对称图形,每个正n边形共有n条对称轴,每条对称轴都经过正n边形的中心;当正n边形的边数为偶数时,这个正n边形也是中心对称图形,正n边形的中心就是对称中心。
(3)
正n边形的每一个内角等于
(n2)180n,中心角和外角相等,等于
360n。
24.4弧长和扇形面积
知识点一弧长公式l=
nR180
在半径为R的圆中,360°的圆心角所对的弧长就是圆的周长C=2πR,所以n°的圆心角所对的弧长的计算公式l=
n360×2πR=
nR180。
知识点二扇形面积公式
在半径为R的圆中,360°的圆心角所对的扇形面积就是圆的面积S=πR2,所以圆心角为n°的扇形的面积为S扇形=
nR3602。
比较扇形的弧长公式和面积公式发现:
S扇形=
nR3602nR18012R12lR,所以s扇形12lR
知识点三圆锥的侧面积和全面积
圆锥的侧面积是曲面,沿着圆锥的一条母线将圆锥的侧面展开,容易得到圆锥的侧面展开图是一个扇形。设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2πr,因此圆锥的侧面积
s圆锥侧122rlrl。圆锥的全面积为s圆锥全s圆锥侧s底2rlr。
25.1随机事件与概率
25.1.1随机事件
知识点一必然事件、不可能事件、随机事件
在一定条件下,有些事件必然会发生,这样的事件称为必然事件;相反地,有些事件必然不会发生,这样的事件称为不可能事件;在一定条件下,可能发生也可能不会发生的事件称为随机事件。
必然事件和不可能事件是否会发生,是可以事先确定的,所以它们统称为确定性事件。知识点二事件发生的可能性的大小
必然事件的可能性最大,不可能事件的可能性最小,随机事件发生的可能性有大有小。不同的随机事件发生的可能性的大小有可能不同。
25.1.2概率
知识点概率
一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记作P(A)。
一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=0≤P(A)≤1.
当A为必然事件时,P(A)=1;当A为不可能事件时,P(A)=0.
mn。由m和n的含义可知0≤m≤n,因此0≤
mn≤1,因此
25.2用列举法求概率
知识点一用列举法求概率
一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=知识点二用列表发求概率
当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常用列表法。
列表法是用表格的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法。
mn。知识点三用树形图求概率
当一次试验要涉及3个或更多的因素时,列方形表就不方便了,为不重不漏地列出所有可能的结果,通常采用树形图。树形图是反映事件发生的各种情况出现的次数和方式,并求出概率的方法。
(1)(2)
树形图法同样适用于各种情况出现的总次数不是很大时求概率的方法。
在用列表法和树形图法求随机事件的概率时,应注意各种情况出现的可能性务必相同。
25.3用频率估计概率
知识点
在随机事件中,一个随机事件发生与否事先无法预测,表面上看似无规律可循,但当我们做大量重复试验时,这个事件发生的频率呈现出稳定性,因此做了大量试验后,可以用一个事件发生的频率作为这个事件的概率的估计值。
一般地,在大量重复试验中,如果事件A发生的频率
mn稳定于某一个常数P,那么事件A发生的频率
P(A)=p。
友情提示:本文中关于《数学九年级上期知识点总结(全)》给出的范例仅供您参考拓展思维使用,数学九年级上期知识点总结(全):该篇文章建议您自主创作。
来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。