小学数学常见问题总结
小学数学常见问题总结
一、植树问题
1非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)
2封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数二、置换问题:
题中有二个未知数,常常把其中一个未知数暂时当作另一个未知数,然后根据已知条件进行假设性的运算。其结果往往与条件不符合,再加以适当的调整,从而求出结果。
例:一个集邮爱好者买了10分和20分的邮票共100张,总值18元8角。这个集邮爱好者买这两种邮票各多少张?
分析:先假定买来的100张邮票全部是20分一张的,那么总值应是20×100=201*(分),比原来的总值多201*-1880=120(分)。而这个多的120分,是把10分一张的看作是20分一张的,每张多算20-10=10(分),如此可以求出10分一张的有多少张。
列式:(201*-1880)÷(20-10)=120÷10=12(张)→10分一张的张数100-12=88(张)→20分一张的张数或是先求出20分一张的张数,再求出10分一张的张数,方法同上,注意总值比原来的总值少。三、盈亏问题(盈不足问题):
题目中往往有两种分配方案,每种分配方案的结果会出现多(盈)或少(亏)的情况,通常把这类问题,叫做盈亏问题(也叫做盈不足问题)。解答这类问题时,应该先将两种分配方案进行比较,求出由于每份数的变化所引起的余数的变化,从中求出参加分配的总份数,然后根据题意,求出被分配物品的数量。其计算方法是:
当一次有余数,另一次不足时:每份数=(余数+不足数)÷两次每份数的差
当两次都有余数时:总份数=(较大余数-较小数)÷两次每份数的差当两次都不足时:总份数=(较大不足数-较小不足数)÷两次每份数的差
例2、学校把一些彩色铅笔分给美术组的同学,如果每人分给五枝,则剩下45枝,如果每人分给7枝,则剩下3枝。求美术组有多少同学?彩色铅笔共有几枝?
(453)÷(7-5)=21(人)21×5+45=150(枝)答:略。四、年龄问题:
年龄问题的主要特点是两人的年龄差不变,而倍数差却发生变化。常用的计算公式是:
成倍时小的年龄=大小年龄之差÷(倍数-1)几年前的年龄=小的现年-成倍数时小的年龄几年后的年龄=成倍时小的年龄-小的现在年龄
例父亲今年54岁,儿子今年12岁。几年后父亲的年龄是儿子年龄的4倍?
(54-12)÷(4-1)=42÷3=14(岁)→儿子几年后的年龄14-12=2(年)→2年后
答:2年后父亲的年龄是儿子的4倍。五、鸡兔同笼问题:
已知鸡兔的总只数和总足数,求鸡兔各有多少只的一类应用题,叫做鸡兔问题,也叫“龟鹤问题”、“置换问题”。
一般先假设都是鸡(或兔),然后以兔(或鸡)置换鸡(或兔)。常用的基本公式有:
(总足数-鸡足数×总只数)÷每只鸡兔足数的差=兔数(兔足数×总只数-总足数)÷每只鸡兔足数的差=鸡数
例:鸡兔同笼共有24只。有64条腿。求笼中的鸡和兔各有多少只?(64-2×24)÷(4-2)=(64-48)÷(4-2)=16÷2=8(只)→兔的只数24-8=16(只)→鸡的只数
答:笼中的兔有8只,鸡有16只。六、牛吃草问题(船漏水问题):
若干头牛在一片有限范围内的草地上吃草。牛一边吃草,草地上一边长草。当增加(或减少)牛的数量时,这片草地上的草经过多少时间就刚好吃完呢?
例1、一片草地,可供15头牛吃10天,而供25头牛吃,可吃5天。如果青草每天生长速度一样,那么这片草地若供10头牛吃,可以吃几天?
分析:一般把1头牛每天的吃草量看作每份数,那么15头牛吃10天,其中就有草地上原有的草,加上这片草地10天长出草,以下类推其中可以发现25头牛5天的吃草量比15头牛10天的吃草量要少。原因是因为其一,用的时间少;其二,对应的长出来的草也少。这个差就是这片草地5天长出来的草。每天长出来的草可供5头牛吃一天。如此当供10牛吃时,拿出5头牛专门吃每天长出来的草,余下的牛吃草地上原有的草。
(15×10-25×5)÷(10-5)=(150-125)÷(10-5)=25÷5=5(头)→可供5头牛吃一天。
150-10×5=150-50=100(头)→草地上原有的草可供100头牛吃一天100÷(10-5)=100÷5=20(天)答:若供10头牛吃,可以吃20天。200÷(7-2)=200÷5=40(分)
答:用7部同样的抽水机,40分钟可以抽干这口井里的水。七、相遇问题
相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间
扩展阅读:小学数学常见问题 时间
小学数学常见问题时间:201*-02-02作者:来源:新东方论坛1、对知识点的理解停留在一知半解的层次上;
2、解题始终不能把握其中关键的数学技巧,孤立的看待每一道题,缺乏举一反三的能力;3、解题时,小错误太多,始终不能完整的解决问题;
4、解题效率低,在规定的时间内不能完成一定量的题目,不适应考试节奏;5、未养成总结归纳的习惯,不能习惯性的归纳所学的知识点;
以上这些问题如果不能很好的解决,在初中的两极分化阶段,同学们可能就会出现成绩的滑坡。(1)细心地发掘概念和公式
很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?
我的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。(2)总结相似的类型题目
这个工作,不仅仅是老师的事,我们的同学要学会自己做。当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。我的建议是:“总结归纳”是将题目越做越少的最好办法。(3)收集自己的典型错误和不会的题目
同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。我之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。我的建议是:做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。(4)就不懂的问题,积极提问、讨论
发现了不懂的问题,积极向他人请教。这是很平常的道理。但就是这一点,很多同学都做不到。原因可能有两个方面:一是,对该问题的重视不够,不求甚解;二是,不好意思,怕问老师被训,问同学被同学瞧不起。抱着这样的心态,学习任何东西都不可能学好。“闭门造车”只会让你的问题越来越多。知识本身是有连贯性的,前面的知识不清楚,学到后面时,会更难理解。这些问题积累到一定程度,就会造成你对该学科慢慢失去兴趣。直到无法赶上步伐。
讨论是一种非常好的学习方法。一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。需要注意的是,讨论的对象最好是与自己水平相当的同学,这样有利于大家相互学习。
我的建议是:“勤学”是基础,“好问”是关键。(5)注重实战(考试)经验的培养
考试本身就是一门学问。有些同学平时成绩很好,上课老师一提问,什么都会。课下做题也都会。可一到考试,成绩就不理想。出现这种情况,有两个主要原因:一是,考试心态不不好,容易紧张;二是,考试时间紧,总是不能在规定的时间内完成。心态不好,一方面要自己注意调整,但同时也需要经历大型考试来锻炼。每次考试,大家都要寻找一种适合自己的调整方法,久而久之,逐步适应考试节奏。做题速度慢的问题,需要同学们在平时的做题中解决。自己平时做作业可以给自己限定时间,逐步提高效率。另外,在实际考试中,也要考虑每部分的完成时间,避免出现不必要的慌乱。我的建议是:把“做作业”当成考试,把“考试”当成做作业。(6)明确遗忘的规律,把握好记忆的良机。遗忘速度是先快后慢
研究表明,在记忆后20分钟、1小时、8小时、24小时、2天、6天、1个月时间后相对应的记住率为:58%、44%、36%、34%、28%、25%、21%。也就是说,在记忆之后短时间内,我们所记忆的东西会快速遗忘,随着时间逐渐增加,遗忘的速度不再如此迅速。这样,我们就应该知道老师们苦口婆心“及时复习”的教导不无道理。越是及时复习,我们遗忘的东西就会越少,我们的宝贵时间也就节约得越多,对于像我这样的懒人来说,需要花费的时间也就越少,也可以玩得更加Happy。当然,每个人的遗忘规律是由差别的,通过简单的试验总结出自己不同时间的遗忘规律,按照自己的遗忘规律来复习和回忆需要记住的事情,就能使我们事半功倍而且不会忘记重要的事情。单纯的一次次反复记忆是不科学也是不合算的,在记忆遗忘最快的阶段及时复习,比如一周以内按照规律进行复习,以后就只在回忆不起来的时候进行回顾式复习,才是恰当和高效的。
科学研究表明,人每天有四个高潮记忆点:
第一点是清晨六至七点。此时大脑已在睡眠过程中完成了对头一天所输入信息的编码工作,加上没有前后识记材料的干扰,识记印象清晰,记忆效率高。第二点是上午八至十点。此时精力旺盛,识记材料的效率高,记忆量较大。第三点是傍晚六至八点,第四点是临睡前一两个小时,我们应该好好把握这些时间段进行学习,这样会起到事半功倍的效果。我的建议是:及时复习,做到温故而知新。
以上,我就数学经常出现的问题,给出了建议,但有一点要强调的是,任何方法最重要的是有效,同学们在学习中千万要避免形式化,要追求实效。任何考试都是考人的头脑,决不是考大家的笔记记的是否清楚,计划制定的是否周全。
友情提示:本文中关于《小学数学常见问题总结》给出的范例仅供您参考拓展思维使用,小学数学常见问题总结:该篇文章建议您自主创作。
来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。