荟聚奇文、博采众长、见贤思齐
当前位置:公文素材库 > 计划总结 > 工作总结 > 新人教版数学七年级上知识点总结

新人教版数学七年级上知识点总结

网站:公文素材库 | 时间:2019-05-28 21:13:55 | 移动端:新人教版数学七年级上知识点总结

新人教版数学七年级上知识点总结

人教版七年级(上)数学知识要点概括

第一章有理数及其运算

1.有理数包括整数和分数;整数包含:正整数、零、负整数;分数包含:正分数、负分数。

正整数和正分数通称为正有理数,负整数和负分数通称为负有理数。2.正数都比0大,负数都比0小,0既不是正数也不是负数。3.正数和负数经常用来表示具有相反意义的量。

4.数轴有三要素:原点、正方向、单位长度。数轴上的两个点表示的数,右边的总比左边

的大。

5.相反数:只有符号不同的两个数互为相反数,a和-a互为相反数,0的相反数是0。在任意的数前面添上“-”号,就表示原来的数的相反数。

6.绝对值:数轴上表示一个数的点与原点的距离叫做该数的绝对值,用“|a|”表示。

正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

当a是正数时,aa;当a是负数时,aa;当a=0时,a0

7.两个负数比较大小,绝对值大的反而小。

8.有理数加法法则:同号两个数相加,取相同的符号,并把绝对值相加。

异号的两个数相加,绝对值不等时,取绝对值较大的数的符号,并

用较大的绝对值减去较小的绝对值。互为相反数的两数相加得0.

一个数同0相加仍得这个数加法交换律:abba

加法结合律:(ab)ca(bc)

9.有理数减法法则:减去一个数等于加上这个数的相反数。

10.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数与0相乘

积仍得0。

11.倒数:乘积是1的两个数互为倒数。一般地,数a的倒数是12.乘法交换律:abba

乘法结合律:(ab)ca(bc)乘法分配律:(ab)cacbc

13.有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

两个有理数相除,同号得正,异号得负,并把绝对值相除。0除以任何数都得0,且0不能作除数。

14.有理数的乘方:求n个相同因数a的积的运算叫做乘方,乘方的结果叫做幂。即15.乘方的正负:正数的任何次幂都是正数,

16.混合运算顺序:先算乘方,再乘除,后加减;同级运算,从左到右进行;

如有括号,先算括号内的运算,按小括号、中括号、大括号依次进行。17.科学记数法:把一个绝对值大于10的数,表示成a10的形式,其中a只有一位不为

零的整数,n是小数点移动的位数。这种记数的方法叫做科学记数法。

18.有效数字:从这个数左边第一个非0数字起,到末位数字止,所有的数字都是这个

数的有效数字。

n

1(a0).aaaa,在a中a叫做底数,n叫做指数,a读作a的n次幂(或n的an次方)。a个

负数的奇次幂是负数,负数的偶次幂是正数。

nnn第1页

第二章整式

1.单项式:由数与字母的乘积组成的式子叫做单项式。单独的一个数或字母也是单项式。2.系数:单项式前面的数字因数叫做这个单项式的系数。

3.单项式的次数:一个单项式中,所有字母指数的和叫做这个单项式的次数。

4.多项式:几个单项式的和叫做多项式。其中,每个单项式叫做多项式的项,不含字母的

项叫做常数项。

5.多项式的次数:多项式里次数最高项的次数,叫做这个多项式的次数。6.整式:单项式与多项式统称整式。

7.同类项:字母相同,并且相同字母的指数也相同的项叫做同类项。几个常数项也是同类

项。

8.合并同类项:把多项式中的同类项合成一项,叫做合并同类项。9.去括号时符号变化规律:

如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号不变;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。10.一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

第三章一元一次方程

1.含有未知数的等式叫做方程,使方程左右两边相等的未知数的值叫做方程的解。2.只含有一个未知数,未知数的次数是1,这样的方程叫做一元一次方程。

3.列方程解应用题:(1)设未知数。(2)找出相等的数量关系,(3)根据相等关系列方

程,解决问题。

4.等式的性质:1、等式两边加(或减)同一个数(或式子),结果仍相等。2、等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。5.移项:把等式一边的某项变号后移到另一边,叫做移项

6.解一元一次方程的一般步骤:①去分母、②去括号、③移项、④合并同类项、⑤化未知

数的系数为1。

第四章图形认识初步

1.几何图形:我们把从实物中抽象出的各种图形统称为几何图形。2.立体图形:各部分不都在同一平面内,这种图形叫做立体图形。3.平面图形:各部分都在同一平面内,这种图形叫做平面图形。

4.平面展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。这样的平面图形称为相应立体图形的展开图。5.三视图:指主视图、左视图、俯视图。

6立体图形也称几何体简称为体,棱柱、圆柱、棱锥、圆锥、球等都是几何体。包围着体的是面,面有平的面和曲的面两种。面和面相交的地方形成线,线和线相交的地方是点。点、线、面、体经过运动变化,组合成各种几何图形。点动成线,线动成面,面动成体。7.几何图形的结构:点、线、面、体组成几何图形。点是构成图形的基本元素。8.点:表示一个物体的位置,通常用一个大写字母表示,如点A、点B。

9.直线的表示方法:①可以用这条直线上任意两点的字母(大写)来表示;②也可以用一个

第2页

小写字母来表示。

10.直线的基本性质:经过两点有一条直线,并且只有一条直线。简称:两点确定一条直线。直线的特征:①直线没有端点,不可量度,向两方无限延伸;②直线没有粗细;③两点确定一条直线;④两条直线相交有唯一一个交点。

点与直线的位置关系:①点在直线上,也可以说这条直线经过这个点;②点在直线外,也可以说直线不经过这个点。

两条直线的位置关系有两种:①相交,当两条不同的直线有一个公共点时,我们就说这两条直线相交,这个公共点叫做这两条直线的交点。②不相交(即平行)。11.射线:直线上一点和它一旁的部分叫做射线。射线的表示方法:①用两个大写字母表示,表示端点的字母写在前面,在两个字母前加上“射线”;②用一个小写字母表示。

射线的性质:①射线是直线的一部分;②射线只向一方无限延伸,有一个端点,不能度量、不能比较长短;③射线上有无穷多个点;④两条射线的公共点可能没有,可能只有一个,可能有无穷多个。

12.线段:直线上两点和它们之间的部分叫做线段。

线段的特点:线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短。线段的表示方法:①用两个端点的大写字母表示;②用一个小写字母表示。线段的基本性质:两点间的所有连线中,线段最短。简称:两点之间线段最短。两点的距离:连接两点间的线段的长度叫做这两点的距离。

13.线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点。14.线段大小的比较方法:(1)叠合法;(2)度量法;(3)估测法。比较线段的大小与比较数的大小一样,也可以用“>”、“<”或“=”来表示,字母前面的“线段”省略不写。线段的和差与其数量的和差是一致的。

15.角:⑴有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边。⑵角也可以看做是由一条射线绕着它的端点旋转而形成的图形。射线旋转时经过的平面部分称为角的内部,平面的其余部分称为角的外部。

注意:①角的大小与边的长短无关,只与构成角的两边张开的幅度大小有关;②角的大小可以度量,可以比较,也可以参与运算。角的表示方法:角可以用大写英文字母、阿拉伯数字或小写希腊字母表示。角的符号是“∠”。具体表示方法如下:①用角的符号和数字表示一个角;②用角的符号和小写的希腊字母表示一个角;③用角的符号和一个大写的英文字母表示一个独立的角(在一顶点处只有一个角);④用角的符号和三个大写的英文字母表示任意一个角,表示顶点的字母要写在中间。角的分类:按角的大小可分为锐角、直角、钝角、平角、周角等。

角的度量单位及换算:度、分、秒是常用的角的度量单位。把一个周角等分成360份,每一份就是1度的角,记做1°;把1度角等分成60份,每一份就是1分的角,记做1′;把一分的角等分成60份,每一份就是1秒的角,记做1″。1°=60′,1′=60″,1周角=360°,1平角=180°,1直角=90°,1周角=2平角=4直角=360°,1平角=2直角=180°。角的大小的比较方法:(1)叠合法:比较两个角的大小时,把角叠合起来使两个角的顶点及一边重合,另一边落在同一条边的同旁,则可比较大小;(2)度量法:量出角的度数,就可以按照角的度数的大小来比较角的大小。比较的结果有三种:①两角相等;②一角大于另一角;③一角小于另一角。角的和、差、倍、分的度数等于角的度数的和、差、倍、分。角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。

余角:如果两个角的和等于90°(直角),就说这两个角互为余角。补角:如果两个角的和等于180°(平角),就说这两个角互为补角。互余、互补的性质:同角(或等角)的余角(或补角)相等。

方位角:表示方向的角,它是指正北(或正南)方向线与目标方向线之间所夹的锐角。如东

北方向35.

第3页

扩展阅读:新北师大版七年级上册数学知识点总结

北师大版七年级上册数学知识点总结

第一章丰富的图形世界

1、几何图形

从实物中抽象出来的各种图形,包括立体图形和平面图形。2、点、线、面、体(1)几何图形的组成

点:线和线相交的地方是点,它是几何图形中最基本的图形。线:面和面相交的地方是线,分为直线和曲线。面:包围着体的是面,分为平面和曲面。体:几何体也简称体。

(2)点动成线,线动成面,面动成体。3、生活中的立体图形

圆柱

柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、

(按名称分)锥圆锥

棱锥

4、棱柱及其有关概念:

棱:在棱柱中,任何相邻两个面的交线,都叫做棱。侧棱:相邻两个侧面的交线叫做侧棱。

n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。5、正方体的平面展开图:11种

6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

7、三视图

物体的三视图指主视图、俯视图、左视图。主视图:从正面看到的图,叫做主视图。左视图:从左面看到的图,叫做左视图。俯视图:从上面看到的图,叫做俯视图。

第二章有理数及其运算

1、有理数的分类

正有理数整数有理数零有理数负有理数分数

2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零

3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。

4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。

正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。互为相反数的两个数的绝对值相等。

6、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示

的数,右边的总比左边的大;两个负数,绝对值大的反而小。

7、有理数的运算:

(1)五种运算:加、减、乘、除、乘方

多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。

有理数加法法则:

同号两数相加,取相同的符号,并把绝对值相加。异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

一个数同0相加,仍得这个数。互为相反数的两个数相加和为0。

有理数减法法则:减去一个数,等于加上这个数的相反数!有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘。任何数与0相乘,积仍为0。有理数除法法则:

两个有理数相除,同号得正,异号得负,并把绝对值相除。0除以任何非0的数都得0。注意:0不能作除数。

有理数的乘方:求n个相同因数a的积的运算叫做乘方。

正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。(2)有理数的运算顺序

先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。(3)运算律

加法交换律abba加法结合律(ab)ca(bc)乘法交换律abba乘法结合律(ab)ca(bc)乘法对加法的分配律a(bc)abac8、科学记数法

一般地,一个大于10的数可以表示成a10的形式,其中1a10,n是正整数,这种记数方法叫做科学记数法。(n=整数位数-1)

n第三章整式及其加减

1、代数式

用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。

注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;

②代数式中不含有“=、>、

※代数式的书写格式:

①代数式中出现乘号,通常省略不写,如vt;

②数字与字母相乘时,数字应写在字母前面,如4a;

③带分数与字母相乘时,应先把带分数化成假分数,如2a应写作④数字与数字相乘,一般仍用“×”号,即“×”号不省略;

⑤在代数式中出现除法运算时,一般写成分数的形式,如4÷(a-4)应写作

137a;34;注意:a4分数线具有“÷”号和括号的双重作用。

⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如(ab)平方米。

2、整式:单项式和多项式统称为整式。

①单项式:都是数字和字母乘积的形式的代数式叫做单项式。单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。

注意:1.单独的一个数或一个字母也是单项式;2.单独一个非零数的次数是0;3.当单项式的系数为1或-1时,这个“1”应省略不写,如-ab的系数是-1,ab的系数是1。

②多项式:几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。

3、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。注意:①同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。

②同类项与系数无关,与字母的排列顺序无关;

③几个常数项也是同类项。

4、合并同类项法则:把同类项的系数相加,字母和字母的指数不变。5、去括号法则

①根据去括号法则去括号:

括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。

②根据分配律去括号:

括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。

6、添括号法则

添“+”号和括号,添到括号里的各项符号都不改变;添“-”号和括号,添到括号里的各项符号都要改变。

7、整式的运算:

整式的加减法:(1)去括号;(2)合并同类项。

33

第四章基本平面图形

1、线段、射线、直线名称直线图形lAB表示方法直线AB(或BA)直线l射线OM线段AB(或BA)线段l端点无端点长度无法度量射线OMl1个无法度量线段AB2个可度量长度2、直线的性质

(1)直线公理:经过两个点有且只有一条直线。(两点确定一条直线。)(2)过一点的直线有无数条。

(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。3、线段的性质

(1)线段公理:两点之间的所有连线中,线段最短。(两点之间线段最短。)(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。(3)线段的大小关系和它们的长度的大小关系是一致的。4、线段的中点:

点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM=BM=1/2AB(或AB=2AM=2BM)。

5、角:

有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。

6、角的表示

角的表示方法有以下四种:

①用数字表示单独的角,如∠1,∠2,∠3等。

②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。

④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。7、角的度量

角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。

把1°的角60等分,每一份叫做1分的角,1分记作“1’”。把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。1°=60’,1’=60”8、角的平分线

从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

9、角的性质

(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。

(2)角的大小可以度量,可以比较,角可以参与运算。

10、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。

11、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。

从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n-3)条对角线,把这个n边形分割成(n-2)个三角形。

12、圆:平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。

圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。顶点在圆心的角叫做圆心角。

第五章一元一次方程

1、方程

含有未知数的等式叫做方程。2、方程的解

能使方程左右两边相等的未知数的值叫做方程的解。3、等式的性质

(1)等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。(2)等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。4、一元一次方程

只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。

5、移项:把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项.6、解一元一次方程的一般步骤:

(1)去分母(2)去括号(3)移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)(4)合并同类项(5)将未知数的系数化为1

第六章数据的收集与整理

1、普查与抽样调查

为了特定目的对全部考察对象进行的全面调查,叫做普查。其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。

从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。

2、扇形统计图扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。(各个扇形所占的百分比之和为1)

圆心角度数=360°×该项所占的百分比。(各个部分的圆心角度数之和为360°)3、频数直方图

频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。

4、各种统计图的特点

条形统计图:能清楚地表示出每个项目的具体数目。折线统计图:能清楚地反映事物的变化情况。

扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

友情提示:本文中关于《新人教版数学七年级上知识点总结》给出的范例仅供您参考拓展思维使用,新人教版数学七年级上知识点总结:该篇文章建议您自主创作。

来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。


新人教版数学七年级上知识点总结》由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
链接地址:http://www.bsmz.net/gongwen/620815.html