荟聚奇文、博采众长、见贤思齐
当前位置:公文素材库 > 计划总结 > 工作总结 > 高中物理必修一知识点总结

高中物理必修一知识点总结

网站:公文素材库 | 时间:2019-05-28 21:14:31 | 移动端:高中物理必修一知识点总结

高中物理必修一知识点总结

第一章.运动的描述

1、时刻与时间间隔的关系

时间间隔能展示运动的一个过程,时刻只能显示运动的一个瞬间。对一些关于时间间隔和时刻的表述,能够正确理解。如:

第4s末、4s时、第5s初……均为时刻;4s内、第4s、第2s至第4s内……均为时间间隔。区别:时刻在时间轴上表示一点,时间间隔在时间轴上表示一段。2、路程与位移的关系

位移表示位置变化,用由初位置到末位置的有向线段表示,是矢量。路程是运动轨迹的长度,是标量。只有当物体做单向直线运动时,位移的大小等于路程。一般情况下,路程≥位移的大小。3、速度与速率的关系

物理意义描述物体运动快慢和方向的物理量,是矢量描述物体运动快慢的物理量,是标量分类平均速度、瞬时速度速率、平均速率(=路程/时间)

决定因素平均速度由位移和时间决定由瞬时速度的大小决定方向平均速度方向与位移方向相同;瞬时速度方向为该质点的运动方向无方向联系它们的单位相同(m/s),瞬时速度的大小等于速率4、速度、加速度与速度变化量的关系速度加速度速度变化量

意义描述物体运动快慢和方向的物理量描述物体速度变化快慢和方向的物理量描述物体速度变化大小程度的物理量,是一过程量定义式

单位m/sm/s2m/s

决定因素v的大小由v0、a、t决定a不是由v、△v、△t决定的,而是由F和m决定。由v与v0决定,而且,也由a与△t决定方向与位移x或△x同向,即物体运动的方向与△v方向一致由或决定方向大小①位移与时间的比值

②位移对时间的变化率

③x-t图象中图线上点的切线斜率的大小值④速度对时间的变化率⑤速度改变量与所用时间的比值

⑥vt图象中图线上点的切线斜率的大小值5、运动图象的理解及应用

由于图象能直观地表示出物理过程和各物理量之间的关系,所以在解题的过程中被广泛应用。在运动学中,经常用到的有x-t图象和vt图象。1.理解图象的含义

(1)x-t图象是描述位移随时间的变化规律(2)vt图象是描述速度随时间的变化规律2.明确图象斜率的含义

(1)x-t图象中,图线的斜率表示速度(2)vt图象中,图线的斜率表示加速度

第二章、匀变速直线运动的研究

1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式.为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,通常以地球为参照物来研究物体的运动.

2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型.仅凭物体的大小不能做视为质点的依据。

3.位移和路程:位移描述物体位置的变化,是从物体运动的初位置指向末位置的有向线段,是矢量.路程是物体运动轨迹的长度,是标量.

路程和位移是完全不同的概念,仅就大小而言,一般情况下位移的大小小于路程,只有在单方向的直线运动中,位移的大小才等于路程.4.速度和速率

(1)速度:描述物体运动快慢的物理量.是矢量.

①平均速度:质点在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间(或位移)的平均速度v,即v=s/t,平均速度是对变速运动的粗略描述.

②瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧.瞬时速度是对变速运动的精确描述.(2)速率:①速率只有大小,没有方向,是标量.

②平均速率:质点在某段时间内通过的路程和所用时间的比值叫做这段时间内的平均速率.在一般变速运动中平均速度的大小不一定等于平均速率,只有在单方向的直线运动,二者才相等.5.加速度

(1)加速度是描述速度变化快慢的物理量,它是矢量.加速度又叫速度变化率.

(2)定义:在匀变速直线运动中,速度的变化Δv跟发生这个变化所用时间Δt的比值,叫做匀变速直线运动的加速度,用a表示.

(3)方向:与速度变化Δv的方向一致.但不一定与v的方向一致.

[注意]加速度与速度无关.只要速度在变化,无论速度大小,都有加速度;只要速度不变化(匀速),无论速度多大,加速度总是零;只要速度变化快,无论速度是大、是小或是零,物体加速度就大.6.匀速直线运动(1)定义:在任意相等的时间内位移相等的直线运动叫做匀速直线运动.(2)特点:a=0,v=恒量.(3)位移公式:S=vt.

7.匀变速直线运动(1)定义:在任意相等的时间内速度的变化相等的直线运动叫匀变速直线运动.

(2)特点:a=恒量

(3)公式:速度公式:V=V0+at速度位移公式:vt2-v02=2as位移公式:s=v0t+at2

平均速度V=

v1=+v22以上各式均为矢量式,应用时应规定正方向,然后把矢量化为代数量求解,通常选初速度方向为正方向,凡是跟正方向一致的取—+‖值,跟正方向相反的取—-‖值.8.重要结论

(1)匀变速直线运动的质点,在任意两个连续相等的时间T内的位移差值是恒量,即ΔS=Sn+lSn=aT2=恒量

(2)匀变速直线运动的质点,在某段时间内的中间时刻的瞬时速度,等于这段时间内的平均速度,即:9.自由落体运动

(1)条件:初速度为零,只受重力作用.(2)性质:是一种初速为零的匀加速直线运动,a=g.(3)公式:10.运动图像

(1)位移图像(s-t图像):①图像上一点切线的斜率表示该时刻所对应速度;②图像是直线表示物体做匀速直线运动,图像是曲线则表示物体做变速运动;③图像与横轴交叉,表示物体从参考点的一边运动到另一边.

(2)速度图像(v-t图像):①在速度图像中,可以读出物体在任何时刻的速度;

②在速度图像中,物体在一段时间内的位移大小等于物体的速度图像与这段时间轴所围面积的值.③在速度图像中,物体在任意时刻的加速度就是速度图像上所对应的点的切线的斜率.④图线与横轴交叉,表示物体运动的速度反向.

⑤图线是直线表示物体做匀变速直线运动或匀速直线运动;图线是曲线表示物体做变加速运动.

第二章、相互作用力

1.力

力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因.力是矢量。2.重力

(1)重力是由于地球对物体的吸引而产生的.

[注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力.但在地球表面附近,可以认为重力近似等于万有引力

(2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g(3)重力的方向:竖直向下(不一定指向地心)。

(4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上.3.弹力

(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的.(2)产生条件:①直接接触;②有弹性形变.

(3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面;在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面.①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等.②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆.

(4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解.

胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m.4.摩擦力

(1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可.

(2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反.

(3)判断静摩擦力方向的方法:

①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向.

②平衡法:根据二力平衡条件可以判断静摩擦力的方向.

(4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解.

①滑动摩擦力大小:利用公式f=μFN进行计算,其中FN是物体的正压力,不一定等于物体的重力,甚至可能和重力无关.或者根据物体的运动状态,利用平衡条件或牛顿定律来求解.

②静摩擦力大小:静摩擦力大小可在0与fmax之间变化,一般应根据物体的运动状态由平衡条件或牛顿定律来求解.

5.物体的受力分析

(1)确定所研究的物体,分析周围物体对它产生的作用,不要分析该物体施于其他物体上的力,也不要把作用在其他物体上的力错误地认为通过—力的传递‖作用在研究对象上.

(2)按—性质力‖的顺序分析.即按重力、弹力、摩擦力、其他力顺序分析,不要把—效果力‖与—性质力‖混淆重复分析.

(3)如果有一个力的方向难以确定,可用假设法分析.先假设此力不存在,想像所研究的物体会发生怎样的运动,然后审查这个力应在什么方向,对象才能满足给定的运动状态.6.力的合成与分解

(1)合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用产生的效果相同,这个力就叫做那几个力的合力,而那几个力就叫做这个力的分力.(2)力合成与分解的根本方法:平行四边形定则.(3)力的合成:求几个已知力的合力,叫做力的合成.

共点的两个力(F1和F2)合力大小F的取值范围为:|F1-F2|≤F≤F1+F2.(4)力的分解:求一个已知力的分力,叫做力的分解(力的分解与力的合成互为逆运算).

在实际问题中,通常将已知力按力产生的实际作用效果分解;为方便某些问题的研究,在很多问题中都采用正交分解法.7.共点力的平衡

(1)共点力:作用在物体的同一点,或作用线相交于一点的几个力.

(2)平衡状态:物体保持匀速直线运动或静止叫平衡状态,是加速度等于零的状态.

(3)★共点力作用下的物体的平衡条件:物体所受的合外力为零,即∑F=0,若采用正交分解法求解平衡问题,则平衡条件应为:∑Fx=0,∑Fy=0.

(4)解决平衡问题的常用方法:隔离法、整体法、图解法、三角形相似法、正交分解法等等.

第三章、牛顿运动定律

1.牛顿第一定律

一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种运动状态为止.(1)运动是物体的一种属性,物体的运动不需要力来维持.(2)定律说明了任何物体都有惯性.

(3)不受力的物体是不存在的.牛顿第一定律不能用实验直接验证.但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的.它告诉了人们研究物理问题的另一种新方法:通过观察大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律.

(4)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系.2.惯性:物体保持匀速直线运动状态或静止状态的性质.

(1)惯性是物体的固有属性,即一切物体都有惯性,与物体的受力情况及运动状态无关.因此说,人们只能—利用‖惯性而不能—克服‖惯性.(2)质量是物体惯性大小的量度.3.牛顿第二定律

物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F合=ma

(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础.(2)对牛顿第二定律的数学表达式F合=ma,F合是力,ma是力的作用效果,特别要注意不能把ma看作是力.

(3)牛顿第二定律揭示的是力的瞬间效果.即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬间效果是加速度而不是速度.

(4)牛顿第二定律F合=ma,F合是矢量,ma也是矢量,且ma与F合的方向总是一致的.F合可以进行合成与分解,ma也可以进行合成与分解.

4.牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上.(1)牛顿第三运动定律指出了两物体之间的作用是相互的,因而力总是成对出现的,它们总是同时产生,同时消失.(2)作用力和反作用力总是同种性质的力.

(3)作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可叠加.5.牛顿运动定律的适用范围:宏观低速的物体和在惯性系中.6.超重和失重

(1)超重:物体有向上的加速度称物体处于超重.处于超重的物体对支持面的压力FN(或对悬挂物的拉力)大于物体的重力mg,即FN=mg+ma.

(2)失重:物体有向下的加速度称物体处于失重.处于失重的物体对支持面的压力FN(或对悬挂物的拉力)小于物体的重力mg.即FN=mg-ma.当a=g时FN=0,物体处于完全失重.(3)对超重和失重的理解应当注意的问题

①不管物体处于失重状态还是超重状态,物体本身的重力并没有改变,只是物体对支持物的压力(或对悬挂物的拉力)不等于物体本身的重力.②超重或失重现象与物体的速度无关,只决定于加速度的方向.—加速上升‖和—减速下降‖都是超重;—加速下降‖和—减速上升‖都是失重.

③在完全失重的状态下,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、浸在水中的物体不再受浮力、液体柱不再产生压强等.

(4)物体出于完全失重状态时,物体与重力有关的现象全部消失:①与重力有关的一些仪器如天平、台秤等不能使用②竖直上抛的物体再也回不到地面③杯口向下时,杯中的水也不流出

扩展阅读:高中物理必修1知识点总结

高中物理必修1知识点归纳

1.质点:一个物体能否看成质点,关键在于把这个物体看成质点

后对所研究的问题有没有影响。如果有就不能,如果没有就可以。

不是物体大就不能当成质点,物体小就可以。例:公转的地球可以当成质点,子弹穿过纸牌的时间、火车过桥不能当成质点2.速度、速率:速度的大小叫做速率。(这里都是指“瞬时”,一

般“瞬时”两个字都省略掉)。

这里注意的是平均速度与平均速率的区别:平均速度=位移/时间平均速率=路程/时间

平均速度的大小≠平均速率(除非是单向直线运动)

3.加速度:avtvtv0ta,v同向加速、反向减速

vt其中v是速度的变化量(矢量),速度变化多少(标量)就是指v的大小;单位时间内速度的变化量是速度变化率,就是

即a。(理论上讲矢量对时间的变化率也是矢量,所以说速度的变化率就是加速度a,不过我们现在一般不说变化率的方向,只是谈大小:速度变化率大,速度变化得快,加速度大)

速度的快慢,就是速度的大小;速度变化的快慢就是加速度的大小;第三章:

4.匀变速直线运动最常用的3个公式(括号中为初速度v00的演

变)

(1)速度公式:vtv0at(2)位移公式:sv0t12at2

(vtat)

(s12at2)

(3)课本推论:vt2v022as(vt22as)

以上的每个公式中,都含有4个物理量,所以“知三求一”。只要物体是做匀变速直线运动,上面三个公式就都可以使用。但是在用公式之前一定要先判断物体是否做匀变速直线运动。常见的有刹车问题,一般前一段时间匀减速,后来就刹车停止了。所以经常要求刹车时间和刹车位移

至于具体用哪个公式就看题目的具体情况了,找出已知量,列

方程。有时候得联立方程组进行求解。在解决运动学问题中,物理过程很重要,只有知道了过程,才知道要用哪个公式,过程清楚了,问题基本上就解决了一半。所以在解答运动学的题目时,一定要把草图画出来。在草图上把已知量标上去,通过草图就可以清楚的看出物理过程和对应的已知量。如果已知量不够,可以适当的假设一些参数,参数的假设也有点技巧,那就是假设的参数尽可能在每个过程都可以用到。这样参数假设的少,解答起来就方便了(例:期中考最后一题,假设速度)。

注:匀变速直线运动还有一些推论公式,如果能够灵活运用,会给计算带来很大的方便。

(4)平均速度:v还有一个公式vstv0vt2(这个是匀变速直线运动才可以用)

(位移/时间),这个是定义式。对于一切

的运动的平均速度都以这么求,不单单是直线运动,曲线运动也

可以(例:跑操场一圈,平均速度为0)。

(5)位移:sv0vt2t

v0vt25.匀变速直线运动有用的推论(一般用于选择、填空)

(1)中间时刻的速度:vt/2v。

此公式一般用在打点计时器的纸带求某点的速度(或类似的题型)。匀变速直线运动中,中间时刻的速度等于这段时间内的平均速度。

(2)中间位置的速度:vs/2v0vt222(3)逐差相等:ss2s1s3s2……snsn1aT2这个就是打点计时器用逐差法求加速度的基本原理。相等时间内相邻位移差为一个定值aT2。如果看到匀变速直线运动有相等的

时间,以及通过的位移,就要想到这个关系式:可以求出加速度,

一般还可以用公式(1)求出中间时刻的速度。

(4)对于初速度为零的匀加速直线运动6.对于匀减速直线运动的分析

如果一开始,规定了正方向,把匀减速运动的加速度写成负值,

那么公式就跟之前的所有公式一模一样。但有时候,题目告诉我们的是减速运动加速度的大小。如:汽车以a=5m/s2的加速度进行刹车。这时候也可以不把加速度写成负值,但是在代公式时得进行适当的变化。(a用大小)

速度:vtv0at位移:sv0t12at2

推论:v02vt22as(就是大的减去小的)特别是求刹车位移:直接s0t0v0av022a,算起来很快。以及求刹车时间:

这里加速度只取大小,其实只要记住加速用“+”,减速用“-”就可以了。牛顿第二定律经常这么用。7.匀变速直线运动的实验研究

实验步骤:

关键的一个就是记住:先接通电源,

OABCDE再放小车。3.07

12.38常见计算:27.87一般就是求加速度a,及某点的速

49.62.度v。

T为每一段相等的时间间隔,一般77.40是0.1s。图2-5

(1)逐差法求加速度

如果有6组数据,则a(s4s5s6)(s1s2s3)(3T)2

如果有4组数据,则a(s3s4)(s1s2)(2T)2

如果是奇数组数据,则撤去第一组或最后一组就可以。

(2)求某一点的速度,应用匀变速直线运动中间时刻的速度

等于平均速度即vnSnSn12T

SOASAB2T比如求A点的速度,则vA

(3)利用v-t图象求加速度a

这个必须先求出每一点的速度,再做v-t图。值得注意的就是作图问题,根据描绘的这些点做一条直线,让直线通过尽量多的点,同时让没有在直线上的点均匀的分布在直线两侧,画完后适当向两边延长交于y轴。那么这条直线的斜率就是加速度a,求斜率的方法就是在直线上(一定是直线上的点,不要取原来的数据点。因为这条直线就是对所有数据的平均,比较准确。直接取数据点虽然算出结果差不多,但是明显不合规范)取两个比较远的点,则av2v1t2t1。

8.自由落体运动

只要说明物体做自由落体运动,就知道了两个已知量:v00,ag

122(1)最基本的三个公式

vtgthgt

vt2gh2

(2)自由落体运动的一些比例关系(3)一些题型

A.关于第几秒内的位移:如一个物体做自由落体运动,在最后1秒内的位移是h,求自由落体高度h。

设总时间为t,则有h求得h。

也可以设最后1秒初的初速度为v1,则有hv1t里t为1s),可以求出v1,则hv1212gt212g(t1)2,求出t,再用h1212gt2gt2(这

2gh

B.经过一个高度差为h的窗户,花了时间t。求物体自由落体的位置距窗户上檐的高度差h。

与题型A的解题思路类似。C.水龙头滴水问题

这种题型的关键在于找出滴水间隔。弄清楚什么时候计时,什么时候停止计时。如果从第一滴水滴出开始计时,到第n滴水滴出停止计时,所花的时间为t,则滴水间隔ttn1。(因为第一

滴水没有算在t时间内,滴出第二滴才有一个时间间隔t,滴出3

滴有2t。)这个不要死记硬背,题目一般都是会变的。可能是上面滴出第一滴计时,下面有n滴落下停止计时;滴出一滴后,数“0”,然后逐渐增加,数到“n”的时候,停止计时;等等

建议:一滴一滴地去数,然后递推到n。

求完时间间隔后,一般是用在求重力加速度g上。水龙头与地面的高度h,如果只有一个时间间隔则g即可)

如果有两个时间间隔则g9.追及相遇问题

2h(2t)22ht2;(t用t、n表示

以此类推

(1)物理思路

有两个物理,前面在跑,后面在追。如果前面跑的快,则二者的距离越来越大;如果后面追的快,则二者距离越来越小。所以速度相等是一个临界状态,一般都要想把速度相等拿来讨论分析。

例:前面由零开始匀加速,后面的匀速。则速度相等时,能追上就追上;如果追不上就追不上,这时有个最小距离。

例:前面匀减速,后面匀速。则肯定追的上,这时候速度相等时有个最大距离。

相遇满足条件:s2s1L(后面走的位移s2等于前面走的位移

s1加上原来的间距L,即后面比前面多走

L,就赶上了)

总之,把草图画出来分析,就清楚很多。这里注意的是如果是第二种情况,前面刹车,后面匀速的。不能直接套公式,得判断到底是在刹车停止之前追上,还是在刹车停止之后才追上。

例题:一辆公共汽车以12m/s的速度经过某一站台时,司机发现一名乘客在车后L=8m处挥手追赶,司机立即以2m/s2的加速度刹车,而乘客以v1的速度追赶汽车,当(1)v1=5m/s(8.8s)(2)v1=10m/s(4s)

则该乘客分别需要多长时间才能追上汽车?

(2)数学公式求解

数学公式就是由s2s1L,列出表达式,代入数值,解一个关于时间t的一元二次方程。根据进行判断:如果>0,则有解,可以相遇二次;=0,刚好相遇一次;0)

1/2a(tt0)2s0,说明无法相遇,在tt0时刻,有最小值s。1/2a(tt0)2s0,说明在tt0时刻,二者距离有最大值s,求出方程等零的解t即可得到相遇时间(刹车问题这里经常会出错)。

1/2a(tt0)20,说明在tt0时刻刚好相遇一次。

数学方法相对来讲可以解决一大部分问题,但是物理思想比较少,如果一味的套用就容易出错。就比如上面的那道例题。推荐使用物理思想解题,别一味的套公式。把草图画出来,就简洁很多了。数学的公式自然就列出来了。

10.弹力

产生条件:1。接触2。相互挤压(弹性形变)

方向:垂直于接触面。点点接触,垂直于切面,即弹力过圆心,或其延长线过圆心。

绳子对别人的拉力沿着绳子收缩的方向。

弹簧的弹力拉伸的情况下与绳子一样,但还可以被压缩。弹簧的弹力满足胡克定律:Fkx,这里的x是指弹簧的形变量,不是弹簧的长度。拉伸xll0,压缩xl0l。(即x为大的减去小的)

注:杆的力一般也沿着杆的方向,除了那种有滑轮的以及用杆固定物体。否则一般情况下,杆对物体的弹力也是沿着杆方向,往外弹或被往里拉(一般是被压缩往外弹)。11.摩擦力

滑动摩擦力大小fN,方向与相对运动方向(相对运动很重要,没有肯定是错的)相反。一定要是滑动摩擦力这个公式才

能用,而且只要是滑动摩擦力这个公式就可以用!

注:这里的N是物体与接触面之间的弹力,N不一定等于重力,切记。物体对接触面的压力与接触面对物体的支持力二者是等大的。

只要接触面固定,那么就一定,改变压力,滑动摩擦力就改变。

静摩擦力的判断相对来讲难一点。

一个是用假设法,假设接触面光滑,看物体怎么相对于接触面怎么运动。摩擦力方向跟相对运动趋势的方向相反。如果没有相对运动趋势,自然就没有静摩擦力。

另外一个是受力分析,根据状态来判断,这个方法是通用的,而且相对来讲能力的要求高一点。对物体受力分析,如果有静摩擦力,符不符合条件所说的状态,如果没有呢。

静摩擦力的大小要根据物体的状态,通过受力分析得到。静摩擦力大小千万不要用滑动摩擦力的公式fN来算。

12.力的合成

合力范围:F1F2FF1F2

两个分力大小固定,则合力的大小随着两分力夹角的增大而减小。

当两个分力相等,F1F2且=120°时,合力大小与分力相等即F1F2=F,这是个特例,应该记住。当大于120°,合力小于分力;当小于120°,合力大于分力。

分力夹角固定,(1)90°,分力增大,合力大小的变化不一定。

验证平行四边形定则实验:注意:

(1)拉力要确定大小、方向;

(2)两次都要把节点拉到O,这样才有相同的作用效果;(3)做力的图示要用相同的标度。13.力的分解

力分解是力合成的逆过程,同样遵守平行四边形定则。关键是按效果分解、正交分解、以及力分解的唯一性条件。

正交分解:坐标系的建立一般是水平竖直,或者平行接触面垂

直接触面建立坐标系。到牛顿第二定律之后,一般是沿着运动方向建立直角坐标系。

建立完坐标系之后,将不在坐标轴上的力进行分解,对边就是sin、邻边就是cos(在正交分解里才是这样,如果用合成的方法对边不一定就是sin,也可能是tan)。

注:分力的性质与被分解力的性质一样,合成就不要求一样了14.平衡问题、牛顿第二定律

所学的一切力都归结于平衡的分析,如果不平衡则应用牛顿第二定律。解力学题的一搬步骤:

(1)受力分析。先分析非接触力,一般就一个重力;再分析接触力,先找接触,看有几个接触。再从简单的开始分析,比如外界的拉力、推力等等。简单接触分析完之后,再分析接触面。一个接触面就可能存在两个力:弹力、摩擦力。受力分析一定要正确,分析完之后,最好再检查一遍。这里要是错了,就全军覆没了!

(2)建立坐标系,找角度、列方程。要是平衡的话,就列平衡方程。x轴上的一堆力合力为零,即正半轴的力=负半轴的力。y轴同理。如果不平衡,那就求出合力,根据牛顿第二定律列方程。F合=ma。列方程的时候,注意不要遗漏一些力,除了在坐标轴上的力,还要加上一些坐标轴上的分力。关于合力谁减去谁,就看加速度沿那个方向。加速度那个方向减去另外一个方向,则合力为正的。求出的加速度就是正的。反之,为负。

(3)求解

关于整体法、隔离法。如果是研究外界对这个系统的作用力的时候,用整体法很方便。

总结:

运动学一定要画草图,并把已知量标上去。这样通过草图就可以清楚看出没一段过程的已知量。“知三求一”,如果不能求,则设一些参数。但是这个参数尽量用的范围要广。

力学受力分析,按照我说的步骤一步一步来,分析错了,就基本没戏了。一般可以自己在旁边另外画一个草图分析,没必要都画在原图上。画在原图上反而有时候不好表示。把所有的力的箭尾都画在重心,否则自己会混淆,画完之后标上符号比如G、F。

不管是运动学还是力学,列方程时,一定要列表达式,不要列一堆的数值方程。同时如果有几个相同的物理量,一定要区分开来。比如:v1、v2、a1、a2、F1、F2等等。不要都用v、a、F。

牛顿第二定律的运用就是围绕一个加速度展开的。分析力求得加速度,用到运动。或通过运动得到加速度,分析力。

15.动态平衡分析:

就是平衡的一个扩展,通过受力分析得到平衡。然后改变条件,问什么力怎么变。

(1)作图法

这种情况一般就是受到三个力平衡情况,通过受力分析,三个力平衡可以得到一个矢量三角形。然后在这个三角形里面,找出不变量,及变化量。进行分析就可。一般不变的有:一个力(一般为重力,大小方向都确定),另外一个力的方向;变化的有:第三个力的方向;问随着第三个力方向的改变,其他力怎么变,或求最小值。

(2)计算法

同样是受力分析,假设出一个角度(有时题目本身就有角度)。把几个力都用一个不变的力表示出来(一般就是重力),改变之后,角度变化引起那几个力的变化。这里有一些数学知识:

tansincos、cotcossin、sin2cos21

当090时,随着的增大、tan变大cos、cot变小几个特殊值

sinsin00、sin901、tan00

cos01、cos900

友情提示:本文中关于《高中物理必修一知识点总结》给出的范例仅供您参考拓展思维使用,高中物理必修一知识点总结:该篇文章建议您自主创作。

来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。


高中物理必修一知识点总结》由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
链接地址:http://www.bsmz.net/gongwen/620865.html