汽车构造上下册简答题100道-个人总结
1.2.3.4.
5.6.7.8.9.10.
11.
12.13.
14.
15.
16.17.
18.19.
20.21.
变速传动机构的工作原理(1)利用不同齿数的齿轮对相互啮合,以改变变速器的传动比;(2)通过增加齿轮传动的对数,以实现倒档。
变速器的功用1)改变传动比,从而改变传递给驱动轮的转矩和转速;2)实现倒车;3)利用空档中断动力的传递。
差速器的功用:是既能向两侧驱动轮传递转矩,又能使两侧驱动轮以不同转速转动,以满足转向等情况下内外驱动轮要以不同转速转动的需要
柴油发动机进气增压的原因:进气增压的作用是将空气通过增压器压入气缸,增大进入气缸的空气量,并相应地增加喷油量,就可以在发动机基本结构不变的情况下增大柴油发动机的扭矩和功率,并且由于混合气密度加大,燃烧条件改善,可以减少排放物污染和降低油耗,对于气压低的高原地区,进气增压更有重要作用
柴油机燃料供给系燃油的供给路线:输油泵将柴油从燃油箱内吸出,经滤清器滤去杂质,进入喷油泵的低压油腔,喷油泵将燃油压力提高,经高压油管至喷油器喷入燃烧室。喷油器内针阀偶件间隙中漏泄的极少量燃油和喷油泵低压油腔中过量燃油,经回油管流回燃油箱
柴油机燃油系统的功用:在适当的时刻将一定数量的洁净柴油增压后以适当的规律喷入燃烧室。喷油定时和喷油量各缸相同且与柴油机运行工况相适应。喷油压力、喷注雾化质量及其在燃烧室内的分布与燃烧室类型相适应。在每一个工作循环内,各气缸均喷油一次,喷油次序与气缸工作顺序一致。根据柴油机负荷的变化自动调节循环供油量,以保证柴油机稳定运转,尤其要稳定怠速,限制超速。储存一定数量的柴油,保证汽车的最大续驶里程。
齿轮式机油泵和转子式机油泵比较:齿轮式机油泵的优点是效率高,功率损失小,工作可靠;缺点是需要中间传动机构,制造成本相应较高。转子式机油泵的优点是结构紧凑,供油量大,供油均匀,噪声小,吸油真空度较高。
充气式减振器的结构特点是:在缸筒的下部装有一个浮动活塞,浮动活塞与缸筒形成的密闭气室中,充有高压氮气。浮动活塞之上是减振器油液。浮动活塞上装有大断面的O形密封圈,把油和气完全分开,此活塞亦称封气活塞。
传动系统的功用(1)减速增矩(2)变速变矩(3)实现倒车(4)必要时中断传动系统的动力传递(5)差速功能
带锁止离合器液力变矩器的工作原理:汽车在变工况下行驶时(如起步、经常加减速),锁止离合器分离,相当于普通液力变矩器;当汽车在稳定工况下行驶时,锁止离合器接合,动力不经液力传动,直接通过机械传动传递,变矩器效率为1。
顶置式气门配气机构采用的原因:.顶置式气门配气机构燃烧室结构紧凑,有利于提高压缩比,热效率较高;进、排气路线短,气流阻力小,气门升程较大,充气系数高,因此,顶置式气门配气机构的发动机动力性和经济性均较侧置式气门发动机为好,所以在现代汽车发动机上得以广泛采用
独立悬架的特性:车桥是断开的,每一侧车轮单独地通过悬架与车架(或车身)相连,每一侧车轮可以独立跳动。
独立悬架的优点:两侧车轮可以单独运动互不影响;减小了非簧载质量,有利于汽车的平顺性;采用断开式车桥,可以降低发动机位置,降低整车重心;车轮运动空间较大,可以降低悬架刚度,改善平顺性。
发动机进气增压的功用:是将空气通过增压器压入气缸,增大进入气缸的空气量,并相应地增加喷油量,就可以在发动机基本结构不变的情况下增大柴油发动机的扭矩和功率,并且由于混合气密度加大,燃烧条件改善,可以减少排放物污染和降低油耗,对于气压低的高原地区,进气增压更有重要作用。
飞轮的功用:是转动惯量很大的盘形零件,其作用如同一个能量存储器。在作功行程中发动机传输给曲轴的能量,除对外输出外,还有部分能量被飞轮吸收,从而使曲轴的转速不会升高很多。在排气、进气和压缩三个行程中,飞轮将其储存的能量放出来补偿这三个行程所消耗的功,从而使曲轴转速不致降低太甚。
分动器的功用(1)利用分动器可以将变速器输出的动力分配到各个驱动桥;(2)多数汽车的分动器还有高低两个档,兼起副变速器的作用。
分配式喷油泵的优点:分配泵结构简单,零件少,体积小,质量轻,使用中故障少,容易维修。分配泵精密偶件加工精度高,供油均匀性好,因此不需要进行各缸供油量和供油定时的调节。分配泵的运动件靠喷油泵体内的柴油进行润滑和冷却,因此,对柴油的清洁度要求很高。分配泵凸轮的升程小,有利于提高柴油机转速。隔热槽设计的原因:是隔断由活塞顶传向第一道活塞环的热流,使部分热量由第二、三道活塞环传出,从而可以减轻第一道活塞环的热负荷,改善其工作条件,防止活塞环粘结。
行驶系统的功用:接受传动系统传来的发动机转矩并产生驱动力;承受汽车的总重量,传递并承受路面作用于车轮上的各个方向的反力及转矩,缓冲减振,保证汽车行驶的平顺性,与转向系统协调配合工作,控制汽车的行驶方向
化油器的功用:是在发动机任何转速、任何负荷、任何大气状况下,向发动机供给一定数量且成分符合发动机工况要求的可燃混合气
活塞连杆组的作用活塞顶部与气缸盖、气缸壁共同组成燃烧室,混合气在其中燃烧膨胀;再由活塞顶承22.
23.
24.25.
26.27.
28.
29.
30.
31.
32.
33.
34.
35.36.37.
38.
受,并把气体压力传给曲轴,使曲轴旋转
活塞裙部要设计成椭圆形的原因:发动机工作时,活塞在气体力和侧向力的作用下发生机械变形,而活塞受热膨胀时还发生热变形。这两种变形的结果都是使活塞裙部在活塞销孔轴线方向的尺寸增大。因此,为使活塞工作时裙部接近正圆形与气缸相适应,在制造时应将活塞裙部的横断面加工成椭圆形,并使其长轴与活塞销孔轴线垂直。另外,沿活塞轴线方向活塞的温度是上高下低,活塞的热膨胀量自然是上大下小。因此为使活塞工作时裙部接近圆柱形,须把活塞制成上小下大的圆锥形或桶形。活塞销偏置的原因:在许多高速发动机中,活塞销孔轴线朝主推力面一侧偏离活塞轴线1~2mm。压缩压力将使活塞在接近上止点时发生倾斜,活塞在越过上止点时,将逐渐地由次推力面转变为由主推力面贴紧气缸壁,从而消减了活塞对气缸的拍击。
机油泵的功用:是保证机油在润滑系统内循环流动,并在发动机任何转速下都能以足够高的压力向润滑部位输送足够数量的机油。机油的功用:润滑机油在运动零件的所有摩擦表面之间形成连续的油膜,以减小零件之间的摩擦。冷却机油在循环过程中流过零件工作表面,可以降低零件的温度。清洗机油可以带走摩擦表面产生的金属碎末及冲洗掉沉积在气缸、活塞、活塞环及其他零件上的积炭。密封附着在气缸壁、活塞及活塞环上的油膜,可起到密封防漏的作用。防锈机油有防止零件发生锈蚀的作用。
机油滤清器的功用:是滤除机油中的金属磨屑、机械杂质和机油氧化物。如果这些杂质随同机油进入润滑系统,将加剧发动机零件的磨损,还可能堵塞油管或油道。
加浓系统的功用:当发动机由中等负荷转入大负荷或全负荷工作时,通过加浓系统额外地供给部分燃油,使混合气由经济混合气加浓到功率混合气,以保证发动机发出最大功率,满足理想化油器特性在大负荷段的加浓要求
节温器的功用:是控制冷却液流动路径的阀门。当发动机冷起动时,冷却液的温度较低,这时节温器将冷却液流向散热器的通道关闭,使冷却液经水泵入口直接流入机体或气缸盖水套,以便使冷却液能够迅速升温。如果不装节温器,让温度较低的冷却液经过散热器冷却后返回发动机,则冷却液的温度将长时间不能升高,发动机也将长时间在低温下运转。同时,车厢内的暖风系统以及用冷却液加热的进气管、化油器预热系统都在长时间内不能发挥作用。
可变配气定时机构采用的原因:因为当发动机转速改变时,由于进气流速和强制排气时期的废气流速也随之改变,因此在气门晚关期间利用气流惯性增加进气和促进排气的效果将会不同。例如,当发动机在低速运转时,气流惯性小,若此时配气定时保持不变,则部分进气将被活塞推出气缸,使进气量减少,气缸内残余废气将会增多。当发动机在高速运转时,气流惯性大,若此时增大进气迟后角和气门重叠角,则会增加进气量和减少残余废气量,使发动机的换气过程臻于完善。总之,四冲程发动机的配气定时应该是进气迟后角和气门重叠角随发动机转速的升高而加大。
蜡式节温器的工作原理:当冷却液温度低于规定值时,节温器感温体内的石蜡呈固态,节温器阀在弹簧的作用下关闭发动机与散热器间的通道,冷却液经水泵返回发动机,进行小循环。当冷却液温度达到规定值后,石蜡开始熔化逐渐变成液体,体积随之增大并压迫橡胶管使其收缩。在橡胶管收缩的同时对推杆作用以向上的推力。由于推杆上端固定,因此,推杆对胶管和感温体产生向下的反推力使阀门开启。这时冷却液经由散热器和节温器阀,再经水泵流回发动机,进行大循环。
冷却风扇的功用:是当风扇旋转时吸进空气使其通过散热器,以增强散热器的散热能力,加快冷却液的冷却速度。汽车发动机水冷系多采用低压头、大风量、高效率的轴流式风扇,即风扇旋转时,空气沿着风扇旋转轴的轴线方向流动。
冷却系统的功用:是使发动机在所有工况下都保持在适当的温度范围内。冷却系统既要防止发动机过热,也要防止冬季发动机过冷。在发动机冷起动之后,冷却系统还要保证发动机迅速升温,尽快达到正常的工作温度
冷却液在冷却系统中的循环路径。冷却液在水泵中增压后,经分水管进入发动机的机体水套。冷却液从水套壁周围流过并从水套壁吸热而升温。然后向上流入气缸盖水套,从气缸盖水套壁吸热之后经节温器及散热器进水软管流入散热器。在散热器中冷却液向流过散热器周围的空气散热而降温,最后冷却液经散热器出水软管返回水泵,如此循环不止
离合器的工作原理:离合器的工作过程可以分为分离过程和接合过程。在分离过程中,踩下离合器踏板,在自由行程内首先消除离合器的自由间隙,然后在工作行程内产生分离间隙,离合器分离。在接合过程中,逐渐松开离合器踏板,压盘在压紧弹簧的作用下向前移动,首先消除分离间隙,并在压盘、从动盘和飞轮工作表面上作用足够的压紧力;之后分离轴承在复位弹簧的作用下向后移动,产生自由间隙,离合器接合。
离合器的功用(1)平顺接合动力,保证汽车平稳起步;(2)临时切断动力,保证换档时工作平顺;(3)防止传动系统过载。
离合器调整的原因:离合器在使用过程中,从动盘会因磨损而变薄,使自由间隙变小,最终会影响离合器的正常接合,所以离合器使用过一段时间后需要调整。
离心式水泵的工作原理:当水泵叶轮旋转时,水泵中的冷却液被叶轮带动一起旋转,并在离心力的作用下被甩向水泵壳体的边缘,同时产生一定的压力,然后从出水管流出。在叶轮的中心处由于冷却液被甩出而压力下降,散热器中的冷却液在水泵进口与叶轮中心的压差作用下经进水管流入叶轮中心理想化油器特性:对于经常在中等负荷下工作的汽车发动机,为了保持其正常的运转,从小负荷到中39.40.
41.42.
43.
44.
45.
46.
47.
48.49.
50.
51.
52.
53.
54.
55.56.
等负荷要求化油器能随着负荷的增加,供给由浓逐渐变稀的混合气,直到供给经济混合气,以保证发动机工作的经济性。从大负荷到全负荷阶段,又要求混合气由稀变浓,最后加浓到功率混合气,以保证发动机发出最大功率
两级压力式油气弹簧的特性是,在工作活塞的上方设有两个并列的气室,但两个气室的工作压力不同。主气室内的气压与单气室油气弹簧的气压相近,而补偿气室内的气压则较高,从而具有了变刚度特性。龙门式机体的优点:机体是指底平面下沉到曲轴轴线以下的机体机体底平面到曲轴轴线的距离称作龙门高度。龙门式机体由于高度增加,其弯曲刚度和扭转刚度均比平底式机体有显著提高。机体底平面与油底壳之间的密封也比较简单。
轮胎的功用:缓冲减振;与路面相互作用产生驱动力、制动力和侧向力;保证汽车通过性;承受汽车重力;
轮胎气压调节系统的功用:(1)汽车在松软地面上行驶时,可降低轮胎气压,增大轮胎的接地面积,减小其单位面积载荷,从而提高汽车的通过性;(2)当轮胎穿孔而漏气时,轮胎气压调节系统可为轮胎充气而使汽车继续行驶,不需马上更换轮胎;(3)使轮胎保持所需要的气压,有效提高汽车行驶安全性和燃油经济性。
膜片弹簧离合器的结构形式比较:膜片弹簧离合器有推式和拉式两种结构形式。推式的特点:分离指在分离轴承向前推力的作用下离合器分离。拉式的特点:分离指在分离轴承向后拉力的作用下离合器分离。
膜片弹簧离合器的优缺点:优点(1)传递的转矩大且较稳定;(2)分离指刚度低;(3)结构简单且紧凑;(4)高速时平衡性好;(5)散热通风性能好;(6)摩擦片的使用寿命长。缺点(1)制造难度大;(2)分离指刚度低,分离效率低;(3)分离指根易出现应力集中;(4)分离指舌尖易磨损。摩擦离合器的工作原理:摩擦离合器依靠摩擦原理传递发动机动力。当从动盘与飞轮之间有间隙时,飞轮不能带动从动盘旋转,离合器处于分离状态。当压紧力将从动盘压向飞轮后,飞轮表面对从动盘表面的摩擦力带动从动盘旋转,离合器处于接合状态。
扭曲环的工作原理:当发动机工作时,在进气、压缩和排气行程中,扭曲环发生扭曲,其工作特点一方面与锥面环类似,另一方面由于扭曲环的上下侧面与环槽的上下侧面相接触,从而防止了环在环槽内上下窜动,消除了泵油现象,减轻了环对环槽的冲击而引起的磨损。在作功行程中,巨大的燃气压力作用于环的上侧面和内圆面,足以克服环的弹性内力使环不再扭曲,整个外圆面与气缸壁接触,这时扭曲环的工作特点与矩形环相同
配气机构的作用:按照发动机每一气缸内所进行的工作循环和发火次序的要求,定时开启和关闭各气缸的进、排气门,使新鲜可燃混合气(汽油机)或空气(柴油机)得以及时进入气缸,废气得以及时从气缸排出
喷油器的功用:是根据柴油机混合气形成的特点,将燃油雾化成细微的油滴,并将其喷射到燃烧室特定的部位。喷油器应满足不同类型的燃烧室对喷雾特性的要求
喷油提前器安装的原因:喷油提前器实际上是喷油泵供油提前角自动调节装置。供油提前角对柴油机性能有很大的影响,供油提前角过大或过小均使柴油机的动力性和经济性恶化。为了保证柴油机有良好的使用性能,必须在最佳供油提前角下工作
起动工况时要供给多而浓的混合气的原因:起动时发动机转速很低,流经化油器的气流速度小,汽油雾化条件差;冷起动时发动机各部分温度低,燃油不易蒸发汽化。大部分燃油呈油粒状态凝结在进气管内壁上,只有极少量易挥发的燃油汽化进入气缸,致使混合气过稀无法燃烧。为了保证发动机的顺利起动,必须供给多而浓的混合气。
气环和油环的功用:气环的主要功用是密封和传热。保证活塞与气缸壁间的密封,防止气缸内的可燃混合气和高温燃气漏入曲轴箱,并将活塞顶部接受的热传给气缸壁,避免活塞过热。油环的主要功用是刮除飞溅到气缸壁上的多余的机油,并在气缸壁上涂布一层均匀的油膜。活塞环工作时受到气缸中高温、高压燃气的作用,并在润滑不良的条件下在气缸内高速滑动
气门弹簧的功用:是保证气门关闭时能紧密地与气门座或气门座圈贴合,并克服在气门开启时配气机构产生的惯性力,使传动件始终受凸轮控制而不相互脱离。防止共振方法:当气门弹簧的工作频率与其固有的振动频率相等或为整数倍时,气门弹簧就会发生共振。共振时将使配气定时遭到破坏,使气门发生反跳和冲击,甚至使弹簧折断。为防止共振的发生,可采取下列结构措施:采用双气门弹簧、变螺距气门弹簧、锥形气门弹簧
气门间隙预留的原因:发动机工作时,气门及其传动件,如挺柱、推杆等都将因为受热膨胀而伸长。如果气门与其传动件之间,在冷态时不预留间隙,则在热态下由于气门及其传动件膨胀伸长而顶开气门,破坏气门与气门座之间的密封,造成气缸漏气,从而使发动机功率下降,起动困难,甚至不能正常工作。为此,在装配发动机时,在气门与其传动件之间需预留适当的间隙,即气门间隙
气门旋转机构的功用:当气门工作时,如能产生缓慢的旋转运动,可使气门头部周向温度分布比较均匀,从而减小气门头部的热变形。同时,气门旋转时,在密封锥面上产生轻微的摩擦力,能够清除锥面上的沉积物。
气体弹簧具有理想的变刚度特性:气体弹簧的特点是,作用在弹簧上的载荷增加时,容器中气压升高,弹簧刚度增大;反之,当载荷减小时,气压下降,刚度减小。气体弹簧具有理想的变刚度特性。汽车发动机将会广泛采用柴油机的原因:.柴油机由于压缩比较高,所以热效率较汽油机高。柴油机的燃57.
58.
59.60.61.
62.63.
64.65.
66.
67.
68.
69.70.
71.
72.
73.
料消耗率曲线(曲线)相对于汽油机曲线来说,不仅最低点较低,而且较为平坦,比汽油机在部份负荷时能节省更多的燃料(汽车发动机经常是处于部分负荷工况)。从石油价格来说,目前我国和世界大部分地区柴油比汽油便宜
汽油滤清器的工作原理:当发动机工作时,汽油在汽油泵的作用下,经进油管接头流入沉淀中,由于此时容积变大,流速变慢,相对密度大的杂质颗粒和水分便沉淀于杯的底部,较轻的杂质随汽油流向滤芯,被粘附在滤芯上或隔离在滤芯外。清洁的汽油渗入到滤芯内腔,从出油管接头流出
汽油箱在必要时应与大气相通的原因:在密闭的油箱中,由于汽油的消耗当油面降低时,箱内将形成一定的真空度,使汽油不能被汽油泵正常吸出;另一方面,在外界气温很高时,过多的汽油蒸汽将使箱内压力过大。这两种情况都要求油箱在内外压差较大时能自动与大气相通,以保证发动机的正常工作前轮前束的功用:是消除前轮外倾造成的前轮向外滚开趋势,减轻轮胎磨损。
前轮外倾角的功用:防止车轮出现内倾;减少轮毂外侧小轴承的受力,防止轮胎向外滑脱;便于与拱形路面接触;
驱动桥的功用:1)通过主减速器齿轮的传动,降低转速,增大转矩;2)主减速器采用锥齿轮传动,改变转矩的传递方向;3)通过差速器可以使内外侧车轮以不同转速转动,适应汽车的转向要求;4)通过桥壳和车轮,实现承载及传力作用。
曲柄连杆的功用:曲柄连杆机构是发动机的主要运动机构。其功用是将活塞的往复运动转变为曲轴的旋转运动,同时将作用于活塞上的力转变为曲轴对外输出的转矩,以驱动汽车车轮转动。
曲轴的功用:是把活塞、连杆传来的气体力转变为转矩,用以驱动汽车的传动系统和发动机的配气机构以及其他辅助装置。曲轴在周期性变化的气体力、惯性力及其力矩的共同作用下工作,承受弯曲和扭转交变载荷
曲轴飞轮组的作用:把连杆传来的力转变为转矩输出,贮存能量,并驱动辅助装置。
曲轴扭转减震器安装的原因:当发动机工作时,曲轴在周期性变化的转矩作用下,各曲拐之间发生周期性相对扭转的现象称为扭转振动,简称扭振。当发动机转矩的变化频率与曲轴扭转的自振频率相同或成整数倍时,就会发生共振。共振时扭转振幅增大,并导致传动机构磨损加剧,发动机功率下降,甚至使曲轴断裂。为了消减曲轴的扭转振动,现代汽车发动机多在扭转振幅最大的曲轴前端装置扭转减振器
全浮式活塞销和半浮式活塞销比较:全浮式活塞销工作时,在连杆小头孔和活塞销孔中转动,可以保证活塞销沿圆周磨损均匀。为防止活塞销两端刮伤气缸壁,在活塞销孔外侧装置活塞销挡圈。半浮式活塞销是用螺栓将活塞销夹紧在连杆小头孔内,这时活塞销只在活塞销孔内转动,在小头孔内不转动。小头孔不装衬套,销孔中也不装活塞销挡圈。半浮式活塞销首先将连杆小头加热到300度左右,再将活塞销压入小头孔中,不用螺栓紧固,从而避免了因为过度拧紧螺栓而使活塞销变形的弊病。还可以降低发动机噪声并消除了活塞销挡圈可能引起的事故。
燃油系统的功用:根据发动机运转工况的需要,向发动机供给一定数量的、清洁的、雾化良好的汽油,以便与一定数量的空气混合形成可燃混合气。同时,燃油系统还需要储存相当数量的汽油,以保证汽车有相当远的续驶里程
润滑系统的功用:就是在发动机工作时连续不断地把数量足够、温度适当的洁净机油输送到全部传动件的摩擦表面,并在摩擦表面之间形成油膜,实现液体摩擦,从而减小摩擦阻力、降低功率消耗、减轻机件磨损,以达到提高发动机工作可靠性和耐久性的目的。
双回路制动系统的优点:如轿车的左前轮和右后轮共用一条制动回路、右前轮和左后轮共用另一条制动回路,当一个回路失效时,另一个回路仍能工作,这样有效提高了汽车的行车安全性。
双气室油气弹簧的优点:当弹簧处于压缩行程时,主气室中的活塞上移,使主气室内的气压增高,弹簧的刚度增大。此时浮动活塞下面的油液,在反压气室的气体压力作用下经通道流入主气室的活塞下面,补充活塞上移后空出的容积,而反压气室内的气压下降。当弹簧处于伸张行程时,主活塞下移,主气室内的气压降低,主活塞下面的油液受挤压,经通道流回浮动活塞的下面,推动活塞上移,而使反压气室内的气压增高,从而提高了伸张行程的弹簧刚度。这种油气弹簧消除了在伸张行程中活塞与缸体底部发生撞击的可能性。
四冲程汽油机工作原理:进气行程中,进气门开启,排气门关闭。活塞从上止点向下止点移动,由化油器形成的可燃混合气被吸进气缸。此时,进、排气门全部关闭。曲轴推动活塞由下止点向上止点移动,称为压缩行程;当活塞接近上止点时,装在气缸盖上的火花塞即发出电火花,点燃被压缩的可燃混合气。此时,进、排气门仍燃关闭。可燃混合气被燃烧后,放出大量的热能。因此,燃气的压力和温度迅速增加。高温高压的燃气推动活塞从上止点向下止点运动,通过连杆使曲轴旋转输出机械能,此即为作功行程;在作功行程接近终了时,排气门即开启,靠废气的压力自由排气,活塞到达下止点后再向上止点移动时,继续将废气强制排到大气中。活塞到上止点附近时,排气行程结束。四气门气缸的优点:四气门发动机每缸两个进气门,两个排气门。其突出的优点是气门通过断面积大,进、排气充分,进气量增加,发动机的转矩和功率提高。其次是每缸四个气门,每个气门的头部直径较小,每个气门的质量减轻,运动惯性力减小,有利于提高发动机转速。最后,四气门发动机多采用篷形燃烧室,火花塞布置在燃烧室中央,有利于燃烧。
调速器的功用:调速器的功用是使柴油机能够随外界负荷的变化自动调节供油量,从而可自动稳定怠速;限制发动机最高转速,防止超速飞车;发动机正常工况下,两速式调速器由驾驶员直接操纵供油拉杆控制74.
75.76.77.
78.
79.
80.
81.
82.
83.84.
85.
86.
87.
88.
89.
90.91.
92.93.
供油量,全速式调速器可自动控制供油量,保持转速稳定;有校正装置时,在全负荷工况可校正发动机转矩特性、改善瞬时超负荷的适应能力
统一式燃烧室和分开式燃烧室比较:统一式燃烧室是由凹形的活塞顶面及气缸壁直接和气缸盖底面包围形成单一内腔的一种燃烧室。分开式燃烧室是由活塞顶和气缸盖底面之间的主燃烧室和设在气缸盖中的副燃烧室两部分组成,两者之间用一个或几个孔道相连两种燃烧室各有特点:分开式燃烧室由于散热面大,气体流动损失大,故燃料消耗率高,且起动性较差。其优点是喷油压力低,发动机工作平稳、排放物污染较少。统一式燃烧室结构紧凑,起动性好,但喷油压力高,发动机工作较粗暴万向传动装置的功用:在轴线相交且相对位置经常变化的两转轴间传递动力。
万向节传动的不等速特性的影响:将使从动轴及与其相连的传动部件产生扭转振动,从而产生附加的交变载荷,影响传动部件的寿命。
涡流室燃烧室的工作原理:涡流室燃烧室的主、副燃烧室之间的连接通道与副燃烧室切向连接,在压缩行程中,空气从主燃烧室经连接通道进入副燃烧室,在其中形成强烈的有组织的压缩涡流,因此称副燃烧室为涡流室。燃油顺气流方向喷射。
无内胎轮胎的优点是:轮胎穿孔时,压力不会急剧下降,能安全地继续行驶;无内胎轮胎中不存在因内外胎之间摩擦和卡住而引起损坏;气密性较好,可以直接通过轮辋散热,所以工作温度低,使用寿命长;结构简单,质量较小。
无汽缸套式机体的优缺点:优点是可以缩短气缸中心距,从而使机体尺寸和质量减小。另外,机体的刚度大,工艺性好。缺点是为了保证气缸的耐磨性,整个铸铁机体需用耐磨的合金铸铁制造,既浪费材料又提高制造成本。
斜交轮胎的优点是:轮胎噪声小,外胎面柔软、制造容易,价格也较子午线轮胎便宜。缺点是:转向行驶时,接地面积小,胎冠滑移大,抗侧向力能力差,高速行驶时稳定性差,滚动阻力较大,油耗偏高,承载能力也不如子午线轮胎。
悬架的功用:把路面作用于车轮上的垂直反力、纵向反力和侧向反力以及这些反力所造成的力矩传递到车架(或承载式车身)上,保证汽车的正常行驶,即起传力作用;利用弹性元件和减振器起到缓冲减振的作用;利用悬架的某些传力构件使车轮按一定轨迹相对于车架或车身跳动,即起导向作用;利用悬架中的辅助弹性元件横向稳定器,防止车身在转向等行驶情况下发生过大的侧向倾斜。液力减振器的工作原理是:当车架与车桥作往复相对运动时,减振器中的活塞在缸筒内也作往复运动,减振器壳体内的油液便反复地从一个内腔通过一些窄小的孔隙流入另一内腔。孔壁与油液间的摩擦及液体分子内的摩擦便形成对振动的阻尼力,使车身和车架的振动能量转化为热能,被油液和减振器壳体所吸收,并散到大气中。
液力耦合器的工作原理:液力耦合器主要由泵轮、涡轮和耦合器外壳等部件组成。其中泵轮与发动机曲轴相连,涡轮与从动轴相连,泵轮和涡轮之间没有机械连接关系,二者之间靠液体流动来传递动力。液力耦合器的优点(1)保证汽车平稳起步;(2)衰减传动系的扭转振动;(3)防止传动系过载;(4)显著减少换档次数。液力耦合器的缺点(1)只能传递转矩,不能改变转矩大小;(2)不能取代离合器,使传动系统纵向尺寸增加;(3)传动效率较低。
液力挺柱采用的原因:在配气机构中预留气门间隙将使发动机工作时配气机构产生撞击和噪声。为了消除这一弊端,有些发动机尤其是轿车发动机采用液力挺柱,借以实现零气门间隙。气门及其传动件因温度升高而膨胀,或因磨损而缩短,都会由液力作用来自行调整或补偿。
预燃室燃烧室的工作原理:主、副燃烧室之间的连接通道不与副燃烧室切向连接,且截面积较小。在压缩行程中,空气在副燃烧室内形成强烈的无组织的紊流。燃油迎着气流方向喷射,并在副燃烧室顶部预先发火燃烧,故称副燃烧室为预燃室。
直喷式燃烧室的工作原理:其全部容积都集中在气缸内,且在活塞顶部设有深浅不一、形状各异的燃烧室凹坑。在直喷式燃烧室的柴油机中,喷油器将燃油直接喷入燃烧室凹坑内,使其与运动气流相混合,形成可燃混合气并燃烧。
止推轴承采用的原因:汽车行驶时由于踩踏离合器而对曲轴施加轴向推力,使曲轴发生轴向窜动。过大的轴向窜动将影响活塞连杆组的正常工作和破坏正确的配气定时和柴油机的喷油定时。为了保证曲轴轴向的正确定位,需装设止推轴承,而且只能在一处设置止推轴承,以保证曲轴受热膨胀时能自由伸长。曲轴止推轴承有翻边轴瓦、半圆环止推片和止推轴承环3种形式。
制动器间隙的影响:是指在不制动时,制动鼓和制动蹄摩擦片之间的间隙。制动器间隙过小,不能保证完全解除制动,此间隙过大,制动器反应时间过长,直接威胁到行车安全。现在很多汽车的制动器都装有制动器间隙自动调整装置,它可以保证制动器间隙始终处于最佳状态,不必经常人工检查和调整。
主减速器的功用:1)降低转速,增大转矩;2)改变转矩旋转方向;
主减速器的调整分为原始调整和使用调整。原始调整是指一对新齿轮的调整,包括新车使用的新齿轮和旧车成对更换的一对新齿轮,要求保证合适的齿侧间隙和正确的啮合印迹;使用调整是指齿轮和轴承磨损,齿轮相互位置发生变化时所进行的调整,只要求保证正确的啮合印迹。
主销内倾角的功用:使前轮自动回正;使转向操纵轻便;减小转向盘上的冲击力;
柱塞偶件间隙的影响:间隙过大,容易漏油,导致油压下降;间隙过小,对偶件润滑不利,且容易卡死94.柱塞式喷油泵速度特性:当油量调节机构位置固定不变时,每循环供油量随柴油机转速变化的规律。
其特点是随着柴油机转速的提高,每一循环的实际供油量是增加的。
95.转向传动机构的功用:是将转向器输出的力和运动传到转向桥两侧的转向节,使转向轮偏转,并使两
转向轮偏转角按一定关系变化,以保证汽车转向时车轮与地面的相对滑动尽可能小。
96.转向盘的自由行程设计的原因:转向盘在空转阶段的角行程称为转向盘的自由行程。转向盘的自由行
程有利于缓和路面冲击,避免驾驶员过度紧张,但不宜过大,否则将使转向灵敏性能下降。
97.子午线轮胎的优点:①接地面积大,附着性能好,胎面滑移小,对地面单位压力也小,因而滚动阻力
小,使用寿命长。②胎冠较厚且有坚硬的带束层,不易刺穿,行驶时变形小,可降低油耗3%~8%。③因帘布层数少,胎侧薄,所以散热性能好。④径向弹性大,缓冲性能好,负荷能力较大。⑤在承受侧向力时,接地面积基本不变,故在转向行驶和高速行驶时稳定性好。缺点是:因胎侧较薄柔软,胎冠较厚在其与胎侧过渡区易产生裂口;吸振能力弱,胎面噪声大些;制造技术要求高,成本也高。98.自动变速器的优点:自动操纵式变速器。它可根据发动机负荷和车速等工况的变化自动变换传动系统
的传动比,使汽车获得良好的动力性和燃油经济性,同时有效减少发动机排放污染,显著提高车辆行驶的安全性、乘坐舒适性和操纵轻便性。
99.自动跳档的防止措施(1)接合套和接合齿圈的齿端制成倒斜面(2)花键毂齿端的齿厚切薄(3)接
合套的齿端制成凸肩
100.阻力可调式减振器的工作原理是,当汽车的载荷增加时,空气囊中的气压升高,则气室内的气压也随
之升高,使膜片向下移动与弹簧产生的压力相平衡。与此同时,膜片带动与它相连的柱塞杆和柱塞下移,使得柱塞相对空心连杆上的节流孔的位置发生变化,结果减小了节流孔的通道截面积,即减少了油液流经节流孔的流量,从而增加了油液流动阻力。
扩展阅读:汽车构造上复习大纲总结
汽车构造复习大纲
总论1、汽车的定义:汽车是由动力驱动,具有四个或四个以上车轮的非轨道无架线承载的车辆。2、汽车总体构造:发动机、底盘、车身、电器和电子设备。第一章
发动机的分类:1、按使用燃料的不同:汽车发动机可以分为汽油发动机、柴油发动机(DI)、CNG发动机、LPG发动机、双燃料发动机。2、按照行程分类
汽车发动机又可分为四行程发动机与二行程发动机。3、按照冷却方式分类
汽车发动机还可分为水冷式发动机和风冷式发动机。4、按照气缸数目分类
发动机又可分为单缸、双缸及多缸发动机。5、按照气缸排列方式分类
分别是直列、斜置、对置、V形和W型。6、按照进气系统是否采用增压方式分类
自然吸气(非增压NA)式发动机和强制进气(增压式T)发动机。汽油机常采用自然吸气式;柴油机为了提高功率有采用增压式的(TDI)。7、按照活塞的工作方式分类:分为往复活塞式与转子8、按照供油方式分:分为化油器式与电喷式发动机的基本术语
工作循环:进气、压缩、做功、排气
排量:发动机各气缸工作容积的总和。
压缩比:压缩前气缸中气体的最大容积与压缩后的最小容积之比。活塞行程:活塞上、下止点之间的距离。
四冲程发动机的工作原理(汽油机与柴油机的区别)1.燃料性质不同
柴油机用的是挥发性很差而燃点又较低的柴油,这种燃料适合于压燃式的柴油发动机,因为柴油粘度较大而挥发性又差,故不适宜应用化油器供油,在压燃式发动机中几乎都是使用高压燃油泵与高压喷油咀供油。2.燃料供给方式不同
汽油机用的是靠进气负压吸取燃油的化油器或电喷装置来供给雾化燃油,燃油雾化后还要靠发动机的结构与热量来进一步地汽化和混合成匀质燃汽;而柴油机则是靠高压燃油泵挤压供应出液态燃油,再通过高压喷油咀,向汽缸燃烧室内直接喷出雾状燃油射流。3.燃烧性质不同
汽油机的燃烧过程是由点到面,靠火焰层在匀质燃汽中传播燃烧;而柴油机燃烧过程是:雾状燃油射流喷入热空气中被点燃的“随喷随烧”。汽油机燃烧的是经过高度汽化混合过的匀质燃汽,燃速较快;而柴油机燃烧的是燃油射流中的细小燃油雾滴,燃烧速度相对偏慢。4.压缩比不同
柴油发动机的压缩比比汽油机大,使得发动机效益较高。柴油机少有做成小排量的;除了个别发动机是强制风冷,多数柴油机都是水冷散热方式。5.排放规律不同
柴油机运转噪音高,但有害气体的排放优于汽油机,而微粒排放较高。6.点火方式不同
汽油机是靠瞬间高温的电火花来点燃匀质汽化燃料,对燃汽质量要求较高;而柴油机则是靠压缩缸内空气产生的高温来引燃油雾着火燃烧。7.燃烧室不同发动机的总体构造两大机构:
曲轴连杆机构:发动机实现工作循环,完成能量转换。
配气机构:它的作用是根据发动机的工作顺序和工作过程,定时开启和关闭进气门和排气门,使可燃混合气或空气进入气缸,并使废气从气缸内排出,实现换气过程。五大系统
冷却系统:它的作用是将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜
的温度状态下工作。
润滑系统:它的作用是向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩
擦,减小摩擦阻力,减轻机件的磨损。并对零件表面进行清洗和冷却。
供给系统:根据发动机的要求,配制出一定数量和浓度的混合气,供入气缸,并将燃烧
后的废气从气缸内排出到大气中去。
点火系统:适时的为汽油发动机气缸内已压缩的可燃混合气提供走够得电火花,使发动
机及时迅速的做功。
起动系统:启动发动机发动机性能指标动力性:1、有效转矩:发动机通过飞轮对外输出的转矩称为发动机的有效转矩,用Te表示。
2、有效功率:发动机通过飞轮对外输出的功率成为发动机的有效功率,用Pe表示。
经济性:发动机每发出1有效功率,在1小时内所消耗的燃油质量,成为燃油消耗率,用be表示。
第二章曲柄连杆机构
1、曲柄连杆机构的功用与组成功用:曲柄连杆机构是往复活塞式内燃机将热能转变为机械能的主要机构。功用是把燃气作用在活塞顶面上的压力转变为曲轴的转矩,向工作机械输出机械能。组成:由机体组、活塞连杆组、曲轴飞轮组三部分组成。2、机体组的组成与作用机体组是发动机的支架,是曲柄连杆机构、配气机构和发动机各系统主要零部件的装配基体。组成:汽缸盖、汽缸盖罩盖、汽缸垫、机体、汽缸套、油底壳等。(1)机体
机体是汽缸体与曲轴箱的连铸体。(2)缸盖
汽缸盖用来密闭气缸的上部,并与活塞顶、汽缸壁共同构成燃烧室。(3)缸垫
汽缸垫用来保证汽缸体与汽缸盖结合面间的密封3、活塞连杆组的组成与作用
活塞连杆组主要由活塞、活塞环、活塞销和连杆等机件组成(1)活塞
活塞的主要作用是承受汽缸中的燃烧压力,并将此力通过活塞销和连杆传给曲轴;此外,活塞还与汽缸盖、汽缸壁共同组成燃烧室。活塞可分为活塞顶、活塞头、活塞裙三部分。活塞顶是燃烧室的组成部分。
由活塞顶至最下面一道活塞环槽之间的部分称为活塞头。其作用是承受气体压力、防止漏气、将热量通过活塞环传给汽缸壁。
活塞环槽以下的所有部分称为活塞裙。其作用是引导活塞在气缸中作往复运动,并承受侧压力。
(2)活塞环
按功用的不同可将活塞环分为气环和油环。气环的主要作用是密封气缸中的高温、高压燃气,防止其大量漏入曲轴箱,同时它还将活塞头70%-.80%的热量传导给气壁缸。油环的作用是刮除气缸壁上多余的机油,并在气缸壁上布上一层均匀的油膜,既可防止机油窜入燃烧室,又可减小活塞及活塞环与汽缸壁的磨损。4、曲轴飞轮组的组成与作用
曲轴飞轮组主要由曲轴、飞轮、正时齿轮、带轮及曲轴扭转减振器等组成。(1)曲轴
曲轴的主要作用是将活塞连杆组传来的气体压力转变为转矩,用以驱动汽车的传动系统和发动机的配气机构以及其他辅助装置。(2)曲轴扭转减振器
减振器是起减振的作用,发动机在各个冲程的转速是不一样的,做功冲程的速度要比压缩冲程快很多,而整车需要稳定的转速,所以在发动机后端安装了飞轮(飞轮还可以储存能量),但前端会发生曲轴扭振,所以会在前端安装扭转减振器,扭转减振器不符合要求还会造成发动机的正时链条错齿。(3)飞轮
飞轮的主要作用是储存做功行程的一部分能量,以克服各辅助行程的阻力,使曲轴均匀旋转,使发动机具有克服短时超载的能力。此外,飞轮又常作为汽车传动系中摩擦离合器的主动盘。第三章配气机构1、充气效率是指每一个进气行程所吸入的空气质量与标准状态下(1个大气压、20℃、密度为1.187kg/m2)占有气缸活塞行程容积的干燥空气质量的比值。大气压力高、温度低、密度高时,发动机的充气效率也将随之提高。2、配气机构的布置方案
气门顶置式配气机构进气门和排气门都倒挂在气缸盖上,气门组包括气门、气门导管、气门座、弹簧座、气门弹簧、锁片等零件;气门传动组一般由摇臂、摇臂轴、推杆、挺柱、凸轮轴和正时齿轮组成。气门顶置式配气机构的工作情况是:气门顶置式配气机构根据凸轮轴的位置有以下三种型式:
(1)凸轮轴下置式配气机构,凸轮轴装在曲轴箱内,直接由凸轮轴正时齿轮与曲轴正时齿轮相啮合,由曲轴带动。气门传动组包括上述全部零件,其应用最为广泛。
(2)凸轮轴中置式配气机构:凸轮轴位于气缸体的上部。为了减小气门传动机构的往复运动的质量,对于高转速的发动机,可将凸轮轴的位置移到气缸体的上部,由凸轮轴经过挺柱直接驱动摇臂而省去推杆。该形式的配气机构因曲轴与凸轮轴的中心线距离较远,一般要在中间加入一个中间齿轮(惰轮)。
(3)凸轮轴上置式配气机构:凸轮轴布置在气缸盖上。凸轮轴直接通过摇臂来驱动气门,没有挺柱和推杆,使往复运动的质量大为减小,对凸轮轴和气门弹簧的要求也最低,因此它适用于高速强化发动机。3、配气相位气门侧置式配气机构进气门和排气、门都装置在气缸体的一侧。发动机的进气门、排气门根据发动机的工作循环打开及关闭的时刻所对应的曲轴转角称之为配气相位角,也叫配气相位。
进气:此时进气门打开,活塞下行,汽油和空气的混合气被吸进汽缸内.
排气:当活塞下行到最低点时排气门打开,废气排出,活塞继续上行把多余的废气排出.所谓的气门重叠,就是进气门跟排气门同时开放
第四章汽油供给系
燃油系统的功能是根据发动机运转工况的需要,向发动机供给一定数量的、清洁的、雾化良好的汽油,以保证汽车有相当远的续驶里程。最后,还要把燃烧后的气体排出。1、汽油供给系的组成:
①燃油供给装置:汽油箱、汽油滤清器、汽油泵、油管。②空气供给装置:空气滤清器。③可燃混合气装置:化油器。
④可燃混合气供给和废气排出装置:进气管、排气管、排气消声器。2、几个部件的作用:
化油器的作用是:根据发动机在不同情况下的需要,将汽油气化,并与空气按一定比例混合成可燃混合气。及时适量进入气缸汽油箱:储存石油
汽油滤清器:1、滤去空气中的尘土和沙粒,以减小气缸、活塞和活塞环的磨损。2、消除发动机在进气行程中所产生的一定强度的噪声。
汽油泵:将汽油从汽油箱吸出,经油管和汽油滤清器泵入化油器的浮子室。进、排气歧管:
(1)气歧管将可燃混合气较均匀地分送到各个气缸(2)排气歧管汇集各缸的废气,经排气消声器排出
排气消声器作用:降低排气噪声并消除废气中的火星及火焰3、可燃混合气的表示方法1、用空燃比(A/F)表示
空燃比(A/F)=空气质量(kg)/燃油质量(kg)
理论上1kg汽油完全燃烧需1.47kg空气,即理论空燃比为1.47。2、用过量空气系数α表示
α=燃烧1kg燃料实际供给的空气质量/理论上完全燃烧时所需的空气质量=实际空燃比/理论空燃比。
即燃烧1kg燃料实际供给的空气质量与理论上完全燃烧时所需要的空气质量之比。
第六章柴油供给系
一、柴油供给系作用及组成1、作用:完成燃料的贮存、滤清和输送工作。并按柴油机不同工作情况下的要求,要定压、定量供给燃烧室进行燃烧。使其与空气迅速良好的混合燃烧,,最后把废气排出。供给系的2、组成:由燃料供给装置、空气供给装置、混合气形成装置和废排装置四部分组成二、柴油机混合气形成的特点
柴油机所用的燃料(柴油)粘度较大,不宜挥发,必须借助喷油设备(喷油泵和喷油器等)将柴油在接近压缩行程终了的时刻,通过高压以细小的油滴形式(油滴直径在1~50μ之间)喷入气缸,与高温高压的热空气混合,经过一系列物理化学准备,然后着火燃烧。故柴油机是采用内部混合的方式形成可燃混合气。
柴油机可燃混合气的形成时间极为短促,一般全负荷时的供油持续时间只有15°~35°曲轴转角,仅相当于转速相同的汽油机的1/45~1/70。这就给柴油机中柴油与空气的良好混合和完全燃烧带来很大困难。,而且喷油与燃烧重叠,出现边燃烧,边喷油,边混合的情况。因此混合气形成过程很复杂。
柴油机由于难以实现喷入气缸的柴油与空气的完全均匀混合,因此要求空气对燃料的比例一般比汽油机大。柴油机的过量空气系数Φat通常在标准工况下都大于1,一般在1.15~2.20范围内。
柴油机迅速形成混合气是在燃油的喷雾、燃油与空气的混合两个阶段形成的。而气缸中空气的运动与柴油机燃烧室的结构是密切相关的。所以,为获得燃油与空气迅速、良好的混合,必须使燃烧室结构、燃油喷雾、缸内空气的运动三方面良好匹配。直喷式燃烧室产生空气运动的方法有进气涡流和挤气涡流两种:分开式燃烧室产生空气运动的方法有压缩涡流和燃烧涡流两种。
三、直列柱塞式与分配式喷油泵的三大偶件
分别是柱塞和柱塞套、出油阀和出油阀座、针阀和针法座四、喷油器的类型以及各自适应的燃烧室
类型:孔式喷油器、轴针式喷油器和低惯量喷油器。
孔式喷油器,它适用于对喷雾质量要求较高的直接喷射式燃烧室
轴针式喷油器,它适用于对喷雾质量要求不高的涡流室式燃烧室和预燃室式燃烧室低惯量喷油器第七章冷却系
1冷却系有何功用与冷却方法?答:发动机冷却系的功用就是对在高温条件下工作的发动机零件进行冷却,保证发动机在最适宜的温度下工作。根据所用冷却介质不同,发动机冷却系可分为水冷式和风冷式两种类型。2、水冷系统的组成及各个部件的功用,冷却液循环路线
组成:包括水泵、散热器、冷却风扇、节温器、补偿水桶、发动机机体和气缸盖中的水套以及其他附加装置等。水冷系的主要部件功用(1)散热器功用:将冷却水在水套中所吸收的热量传给大气,增大散热面积,加速水冷却。(2)风扇风扇的功用是当风扇旋转时吸进空气使其通过散热器,以增强散热器的散热能力,加快冷却液的冷却速度。
(3)水泵:对冷却水加压,使冷却水在冷却系统中循环流动,加强冷却效果。
(4)节温器:根据发动机冷却水温度的高低,自动改变冷却水的循环路线及流量,以使发动机始终在最适合的温度下工作
(5)风扇离合器和温控开关:控制风扇的转速,自动调节冷却温度
(6)百叶窗:调节流经散热器的空气量来调节冷却系的冷却强度,实现对散热器电机风扇的控制。
冷却液在冷却系统中的循环路径:冷却液在水泵中增压后,经分水管进入发动机的机体水套。冷却液从水套壁周围流过并从水套壁吸热而升温。然后向上流入气缸盖水套,从气缸盖水套壁吸热之后经节温器及散热器进水软管流入散热器。在散热器中冷却液向流过散热器周围的空气散热而降温,最后冷却液经散热器出水软管返回水泵,如此循环不止。第八章润滑系1、润滑方式与润滑系的功用
润滑方式:压力润滑、飞溅润滑、润滑脂润滑润滑系的功用:润滑、冷却、清洗、密封
2、压力润滑的组成及各部件的功用,润滑油路组成及各部件的功用:
(1)油底壳:贮存润滑油的装置,加密封垫后固定在气缸体底面上。(2)机油泵:能够建立足够的油压,以保证机油循环,实现压力润滑。
(3)限压阀及旁通阀:限压阀用来限制最高油压,旁通阀用来避免因机油粗滤器堵塞而造成主油道供油中断。
(4)机油滤清器:用来防止润滑油中混入的金属磨屑、机械杂质及润滑油本身氧化生成的胶质进入主油道。
(5)机油散热器:用来加强润滑油冷却,是润滑油温度保持在正常工作范围内。(6)机油压力表、温度表和机油标尺:用来使驾驶员随时掌握润滑系工作状况。3、润滑油路?
友情提示:本文中关于《汽车构造上下册简答题100道-个人总结》给出的范例仅供您参考拓展思维使用,汽车构造上下册简答题100道-个人总结:该篇文章建议您自主创作。
来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。