荟聚奇文、博采众长、见贤思齐
当前位置:公文素材库 > 计划总结 > 工作总结 > 高二数学选修2-1知识点总结

高二数学选修2-1知识点总结

网站:公文素材库 | 时间:2019-05-28 22:20:46 | 移动端:高二数学选修2-1知识点总结

高二数学选修2-1知识点总结

高二数学(上)期末复习部分知识点概要201*-1-5

高二数学选修2-1知识点

1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句.2、“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论.

3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题.

若原命题为“若p,则q”,它的逆命题为“若q,则p”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若p,则q”,则它的否命题为“若p,则q”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题.若原命题为“若p,则q”,则它的否命题为“若q,则p”.6、四种命题的真假性:

原命题逆命题否命题逆否命题真真真真真假假真假真真真假假假假四种命题的真假性之间的关系:

1两个命题互为逆否命题,它们有相同的真假性;

2两个命题为互逆命题或互否命题,它们的真假性没有关系.

7、若pq,则p是q的充分条件,q是p的必要条件.若pq,则p是q的充要条件(充分必要条件).

8、用联结词“且”把命题p和命题q联结起来,得到一个新命题,记作pq.当p、q都是真命题时,pq是真命题;当p、q两个命题中有一个命题是假命题时,pq是假命题.

用联结词“或”把命题p和命题q联结起来,得到一个新命题,记作pq.当p、q两个命题中有一个命题是真命题时,pq是真命题;当p、q两个命题都是假命题时,pq是假命题.

对一个命题p全盘否定,得到一个新命题,记作p.

若p是真命题,则p必是假命题;若p是假命题,则p必是真命题.

9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“”表示.含有全称量词的命题称为全称命题.

全称命题“对中任意一个x,有px成立”,记作“x,px”.短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“”表示.含有存在量词的命题称为特称命题.

1--高二数学(上)期末复习部分知识点概要201*-1-5

特称命题“存在中的一个x,使px成立”,记作“x,px”.10、全称命题p:x,px,它的否定p:x,px.全称命题的否定是特称命题.

11、平面内与两个定点F1,F2的距离之和等于常数(大于F1F2)的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.12、椭圆的几何性质:

焦点在y轴上焦点的位置焦点在x轴上

图形

标准方程范围顶点轴长

焦点焦距对称性离心率准线方程

xa2

y22x22abaxa且byb

y221ab0

abbxb且aya

x221ab0

1a,0、2a,010,b、20,b

10,a、20,a1b,0、2b,0

短轴的长2b长轴的长2a

F1c,0、F2c,0F10,c、F20,c

F1F22ccab222

关于x轴、y轴、原点对称

eca1ba220e1

ya2c

c

13、设是椭圆上任一点,点到F1对应准线的距离为d1,点到F2对应准线的距离为d2,则

F1d1F2d2e.

14、平面内与两个定点F1,F2的距离之差的绝对值等于常数(小于F1F2)的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双

曲线的焦距.

2--高二数学(上)期末复习部分知识点概要201*-1-5

15、双曲线的几何性质:焦点的位置焦点在x轴上

焦点在y轴上

图形

标准方程范围

顶点轴长焦点焦距对称性离心率准线方程渐近线方程

xy

y22x22abxa或xa,yR

y221a0,b0

abya或ya,xR

x221a0,b0

1a,0、2a,010,a、20,a

虚轴的长2b实轴的长2a

F1c,0、F2c,0F10,c、F20,c

F1F22ccab222

关于x轴、y轴对称,关于原点中心对称

eca1ba22e1

yya2cba

xa2

cab

x

16、实轴和虚轴等长的双曲线称为等轴双曲线.

17、设是双曲线上任一点,点到F1对应准线的距离为d1,点到F2对应准线的距离为d2,则

F1d1F2d2e.

18、平面内与一个定点F和一条定直线l的距离相等的点的轨迹称为抛物线.定点F称为抛物线的焦点,定直线l称为抛物线的准线.

19、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为

抛物线的“通径”,即2p.20、焦半径公式:

若点x0,y0在抛物线y22pxp0上,焦点为F,则Fx0p2;

p2若点x0,y0在抛物线y22pxp0上,焦点为F,则Fx0若点x0,y0在抛物线x22pyp0上,焦点为F,则Fy0p2;

p2若点x0,y0在抛物线x22pyp0上,焦点为F,则Fy0

3--4

.高二数学(上)期末复习部分知识点概要201*-1-5

21、抛物线的几何性质:

标准方程

图形

顶点对称轴焦点准线方程离心率范围

y22px

y22px

x22py

x22py

p0p0p0p0

0,0

x轴

y轴

Fp,0Fp22,0

Fp0,F0,p22

xp2

xp2

yp2

yp2

e1x0x0y0y0

4--

扩展阅读:高二数学选修2-1知识点总结

高二数学(上)期末复习部分知识点概要201*-1-5高二数学选修2-1知识点

1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句.2、“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论.

3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题.若原命题为“若p,则q”,它的逆命题为“若q,则p”.

4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若p,则q”,则它的否命题为“若p,则q”.

5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题.

若原命题为“若p,则q”,则它的否命题为“若q,则p”.6、四种命题的真假性:

原命题逆命题否命题逆否命题真真真真真假假真假真真真假假假假

四种命题的真假性之间的关系:

1两个命题互为逆否命题,它们有相同的真假性;

2两个命题为互逆命题或互否命题,它们的真假性没有关系.

7、若pq,则p是q的充分条件,q是p的必要条件.若pq,则p是q的充要条件(充分必要条件).

8、用联结词“且”把命题p和命题q联结起来,得到一个新命题,记作pq.

当p、q都是真命题时,pq是真命题;当p、q两个命题中有一个命题是假命题时,pq是假命题.

用联结词“或”把命题p和命题q联结起来,得到一个新命题,记作pq.

当p、q两个命题中有一个命题是真命题时,pq是真命题;当p、q两个命题都是假命题时,pq是假命题.

对一个命题p全盘否定,得到一个新命题,记作p.

若p是真命题,则p必是假命题;若p是假命题,则p必是真命题.

9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“”表示.含有全称量词的命题称为全称命题.

全称命题“对中任意一个x,有px成立”,记作“x,px”.短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“”表示.含有存在量词的命题称为特称命题.

特称命题“存在中的一个x,使px成立”,记作“x,px”.

10、全称命题p:x,px,它的否定p:x,px.全称命题的否定是特称命题.11、平面内与两个定点F(大于F的点的轨迹称为椭圆.这F2的距离之和等于常数1,1F2)两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.12、椭圆的几何性质:

1--高二数学(上)期末复习部分知识点概要201*-1-5焦点的位置

焦点在x轴上

焦点在y轴上

图形

标准方程范围顶点轴长焦点焦距对称性离心率准线方程

xy1ab0a2b2axa且byb

22yx1ab0a2b2bxb且aya

22

1a,0、2a,010,b、20,bF1c,0、F2c,0

10,a、20,a1b,0、2b,0F10,c、F20,c

短轴的长2b长轴的长2a

F1F22cc2a2b2

关于x轴、y轴、原点对称

cb2e120e1

aaa2x

ca2y

c13、设是椭圆上任一点,点到F1对应准线的距离为d1,点到F2对应准线的距离为d2,则

F1d1F2d2e.

14、平面内与两个定点F1,F2的距离之差的绝对值等于常数(小于F1F2)的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.15、双曲线的几何性质:

焦点在y轴上焦点的位置焦点在x轴上

图形

标准方程范围顶点轴长焦点

xy1a0,b022abxa或xa,yR

22yx1a0,b022abya或ya,xR

22

1a,0、2a,0F1c,0、F2c,0

10,a、20,aF10,c、F20,c

虚轴的长2b实轴的长2a

2--高二数学(上)期末复习部分知识点概要201*-1-5焦距对称性离心率准线方程渐近线方程

F1F22cc2a2b2

关于x轴、y轴对称,关于原点中心对称

cb2e12e1

aaa2x

cbyx

aa2y

cayx

b16、实轴和虚轴等长的双曲线称为等轴双曲线.

17、设是双曲线上任一点,点到F1对应准线的距离为d1,点到F2对应准线的距离为d2,则

F1d1F2d2e.

18、平面内与一个定点F和一条定直线l的距离相等的点的轨迹称为抛物线.定点F称为抛物线的焦点,定直线l称为抛物线的准线.

19、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的

“通径”,即2p.20、焦半径公式:

p;2p2若点x0,y0在抛物线y2pxp0上,焦点为F,则Fx0;

2p2若点x0,y0在抛物线x2pyp0上,焦点为F,则Fy0;

2p2若点x0,y0在抛物线x2pyp0上,焦点为F,则Fy0.

2若点x0,y0在抛物线y22pxp0上,焦点为F,则Fx0

21、抛物线的几何性质:标准方程

y22pxy22pxx22pyx22py

p0p0p0p0

图形顶点对称轴焦点准线方程

0,0

x轴

pF,02xp2y轴

pF,02xp2pF0,

2yp2pF0,

2yp23--高二数学(上)期末复习部分知识点概要201*-1-5离心率范围

e1x0x0y0y0

4--

友情提示:本文中关于《高二数学选修2-1知识点总结》给出的范例仅供您参考拓展思维使用,高二数学选修2-1知识点总结:该篇文章建议您自主创作。

来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。


高二数学选修2-1知识点总结》由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
链接地址:http://www.bsmz.net/gongwen/626846.html