荟聚奇文、博采众长、见贤思齐
当前位置:公文素材库 > 计划总结 > 工作总结 > 高中数学函数知识总结

高中数学函数知识总结

网站:公文素材库 | 时间:2019-05-28 22:39:30 | 移动端:高中数学函数知识总结

高中数学函数知识总结

高中数学函数知识点梳理

1..函数的单调性

(1)设x1x2a,b,x1x2那么

f(x1)f(x2)0f(x)在a,b上是增函数;

x1x2f(x1)f(x2)0f(x)在a,b上是减函数.(x1x2)f(x1)f(x2)0x1x2(2)设函数yf(x)在某个区间内可导,如果f(x)0,则f(x)为增函数;如果f(x)0,则f(x)为减函数.

注:如果函数f(x)和g(x)都是减函数,则在公共定义域内,和函数f(x)g(x)也是减函数;如果函数yf(u)和ug(x)在其对应的定义域上都是减函数,则复合函数yf[g(x)]是增函数.

(x1x2)f(x1)f(x2)02.奇偶函数的图象特征

奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.

注:若函数yf(x)是偶函数,则f(xa)f(xa);若函数yf(xa)是偶函数,则f(xa)f(xa).

注:对于函数yf(x)(xR),f(xa)f(bx)恒成立,则函数f(x)的对称轴是函数xabab;两个函数yf(xa)与yf(bx)的图象关于直线x对称.22a注:若f(x)f(xa),则函数yf(x)的图象关于点(,0)对称;若

2f(x)f(xa),则函数yf(x)为周期为2a的周期函数.

3.多项式函数P(x)anxnan1xn1a0的奇偶性

多项式函数P(x)是奇函数P(x)的偶次项(即奇数项)的系数全为零.多项式函数P(x)是偶函数P(x)的奇次项(即偶数项)的系数全为零.23.函数yf(x)的图象的对称性

(1)函数yf(x)的图象关于直线xa对称f(ax)f(ax)

f(2ax)f(x).

(2)函数yf(x)的图象关于直线xab对称f(amx)f(bmx)2f(abmx)f(mx).

4.两个函数图象的对称性

(1)函数yf(x)与函数yf(x)的图象关于直线x0(即y轴)对称.(2)函数yf(mxa)与函数yf(bmx)的图象关于直线x(3)函数yf(x)和yf1ab对称.2m(x)的图象关于直线y=x对称.

25.若将函数yf(x)的图象右移a、上移b个单位,得到函数yf(xa)b的图象;若将曲线f(x,y)0的图象右移a、上移b个单位,得到曲线f(xa,yb)0的图象.

5.互为反函数的两个函数的关系

f(a)bf1(b)a.

27.若函数yf(kxb)存在反函数,则其反函数为y1[fk1(x)b],并不是

y[f1(kxb),而函数y[f1(kxb)是y6.几个常见的函数方程

1[f(x)b]的反函数.k(1)正比例函数f(x)cx,f(xy)f(x)f(y),f(1)c.(2)指数函数f(x)ax,f(xy)f(x)f(y),f(1)a0.

(3)对数函数f(x)logax,f(xy)f(x)f(y),f(a)1(a0,a1).

(4)幂函数f(x)x,f(xy)f(x)f(y),f"(1).

(5)余弦函数f(x)cosx,正弦函数g(x)sinx,f(xy)f(x)f(y)g(x)g(y),

f(0)1,limx0g(x)1.x7.几个函数方程的周期(约定a>0)

(1)f(x)f(xa),则f(x)的周期T=a;(2)f(x)f(xa)0,

1(f(x)0),f(x)1或f(xa)(f(x)0),

f(x)12或f(x)f(x)f(xa),(f(x)0,1),则f(x)的周期T=2a;21(f(x)0),则f(x)的周期T=3a;(3)f(x)1f(xa)f(x1)f(x2)(4)f(x1x2)且f(a)1(f(x1)f(x2)1,0|x1x2|2a),则

1f(x1)f(x2)f(x)的周期T=4a;

(5)f(x)f(xa)f(x2a)f(x3a)f(x4a)

f(x)f(xa)f(x2a)f(x3a)f(x4a),则f(x)的周期T=5a;(6)f(xa)f(x)f(xa),则f(x)的周期T=6a.

或f(xa)8.分数指数幂

(1)a(2)amn1nmnam1mn(a0,m,nN,且n1).(a0,m,nN,且n1).

a9.根式的性质(1)(na)na.(2)当n为奇数时,nana;a,a0当n为偶数时,a|a|.

a,a0nn10.有理指数幂的运算性质

(1)arasars(a0,r,sQ).(2)(ar)sars(a0,r,sQ).

(3)(ab)rarbr(a0,b0,rQ).

p

注:若a>0,p是一个无理数,则a表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.

33.指数式与对数式的互化式

logaNbabN(a0,a1,N0).

34.对数的换底公式

logmN(a0,且a1,m0,且m1,N0).

logmann推论logamblogab(a0,且a1,m,n0,且m1,n1,N0).

mlogaN11.对数的四则运算法则

若a>0,a≠1,M>0,N>0,则(1)loga(MN)logaMlogaN;

MlogaMlogaN;N(3)logaMnnlogaM(nR).

(2)loga注:设函数f(x)logm(ax2bxc)(a0),记b4ac.若f(x)的定义域为

2R,则a0,且0;若f(x)的值域为R,则a0,且0.对于a0的情形,需要

单独检验.

12.对数换底不等式及其推论

1,则函数ylogax(bx)a11(1)当ab时,在(0,)和(,)上ylogax(bx)为增函数.

aa11(2)(2)当ab时,在(0,)和(,)上ylogax(bx)为减函数.

aa若a0,b0,x0,x推论:设nm1,p0,a0,且a1,则(1)logmp(np)logmn.(2)logamloganloga2mn.

扩展阅读:高中数学三角函数知识点总结实用版[1]

高中数学第四章-三角函数

1.①与(0°≤<360°)终边相同的角的集合(角与角的终边重合):

|k360,kZ

▲y2sinx1cosxcosx②终边在x轴上的角的集合:|k180,kZ③终边在y轴上的角的集合:|k18090,kZ④终边在坐标轴上的角的集合:|k90,kZ⑤终边在y=x轴上的角的集合:|k18045,kZ⑥终边在yx轴上的角的集合:|k18045,kZ

3sinx4cosxcosx1sinx2sinx3x4SIN\\COS三角函数值大小关系图1、2、3、4表示第一、二、三、四象限一半所在区域⑦若角与角的终边关于x轴对称,则角与角的关系:360k⑧若角与角的终边关于y轴对称,则角与角的关系:360k180⑨若角与角的终边在一条直线上,则角与角的关系:180k⑩角与角的终边互相垂直,则角与角的关系:360k902.角度与弧度的互换关系:360°=2180°=1°=0.017451=57.30°=57°18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.

、弧度与角度互换公式:1rad=180°≈57.30°=57°18.1°=≈0.01745(rad)

1803、弧长公式:l2||r.扇形面积公式:s扇形lr||r

12124、三角函数:设是一个任意角,在的终边上任取(异于原点的)一点P(x,y)P与原点的距离为r,则siny;rya的终边P(x,y)ryxcos;tanxr;cotx;secr;.cscr.yxyox5、三角函数在各象限的符号:(一全二正弦,三切四余弦)++ox--正弦、余割y-+o-+x余弦、正割y-+ox+-正切、余切OyyPTMAx

16.几个重要结论:(1)y6、三角函数线

正弦线:MP;余弦线:OM;正切线:AT.

高三数学总复习三角函数

(2)y|sinx|>|cosx|sinx>cosxOx|cosx|>|sinx|O|cosx|>|sinx|xcosx>sinx|sinx|>|cosx|(3)若o

7.三角函数的定义域:三角函数f(x)sinxf(x)cosxf(x)tanxf(x)cotxf(x)secxf(x)cscx定义域x|xRx|xR1x|xR且xk,kZ2x|xR且xk,kZ1x|xR且xk,kZ2x|xR且xk,kZcoscoscotsin8、同角三角函数的基本关系式:sintan

cos1tancot1cscsin1sec

sin2cos21sec2tan21csc2cot21

9、诱导公式:

把k的三角函数化为的三角函数,概括为:2“奇变偶不变,符号看象限”

三角函数的公式:(一)基本关系

公式组一公式组二公式组三sinxsin(2kx)sinxsin(x)sinxsinxcscx=1tanx=sin2x+cos2x=1cosxcos(2kx)cosxcos(x)cosxcosx2

x=cosxsecx=11+tanx=sec2xtan(2kx)tanxtan(x)tanxsinxcot(2kx)cotxcot(x)coxttanxcotx=11+cot2x=csc2x公式组四公式组五公式组六sin(x)sinxsin2(x)sinxsin(x)sinxcos(x)cosxcos2(x)cosxcos(x)cosx

tan(x)tanxtan2(x)tanxtan(x)tanxcot(x)cotxcot2(x)coxtcot(x)coxt(二)角与角之间的互换

公式组一公式组二

22sincoscos()coscossinsinsin2sco2ssi2n2co2s112sincos()coscossinsinco2sin()sincoscossintan22tan1tan2

sin()sincoscossinsin21cos2tan()tantan1coscos

1tantan22高三数学总复习三角函数tan()tantantan1cossin1cos1tantan21cos1cossin公式组三公式组四公式组五11sinsincos()sin2tan222sin1cossinsinsin11tan2sin()cos2221coscoscoscos122tan()cot1tan122sinsincoscoscos211tan2cos()sin2sinsin2sincos2221sinsin2cossintan()cot2tan2222tancoscos2coscos11tan222sin()cos22coscos2sinsin2262,,tan15cot7523,.tan75cot1523sin15cos75sincos4sin75cos1562

4

10.正弦、余弦、正切、余切函数的图象的性质:定义域值域周期性奇偶性单调性ysinxycosxR[1,1]ytanx1x|xR且xk,kZ2ycotxx|xR且xk,kZRyAsinx(A、>0)RR[1,1]RA,A当0,非奇非偶当0,奇函数2k2k2(A),12(A)2奇函数22偶函数[2k1,2k]奇函数k,k22奇函数[22k,;k,k1上为减函数(kZ)22k]上为增函数;[2k,232k]2上为增函数[2k,2k1]上为减函数(kZ)上为增函数(kZ)上为增函数;2k上为减函数(kZ)2(A),32k2(A)上为减函数高三数学总复习三角函数(kZ)注意:①ysinx与ysinx的单调性正好相反;ycosx与ycosx的单调性也同样相反.一般地,若yf(x)在[a,b]上递增(减),则yf(x)在[a,b]上递减(增).

▲②ysinx与ycosx的周期是.

x)或ycos(x)(0)的周期T③ysin(2y.

Oxxytan的周期为2(TT2,如图,翻折无效).

2x)的对称轴方程是xk④ysin(2(cs(kZ),对称中心(k,0);yox)的

对称轴方程是xk(kZ),对称中心(k1,0);yant(2(x)的对称中心

k.,0)2ycos2x原点对称ycos(2x)cos2x

tan1,k⑤当tan

2tan1,k(kZ);tan

2(kZ).

⑥ycosx与ysinx2k是同一函数,而y(x)是偶函数,则

21y(x)sin(xk)cos(x).

2⑦函数ytanx在R上为增函数.(×)[只能在某个单调区间单调递增.若在整个定义域,

ytanx为增函数,同样也是错误的].

⑧定义域关于原点对称是f(x)具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:f(x)f(x),奇函数:f(x)f(x))

1奇偶性的单调性:奇同偶反.例如:ytanx是奇函数,ytan(x)是非奇非偶.(定

3义域不关于原点对称)

奇函数特有性质:若0x的定义域,则f(x)一定有f(0)0.(0x的定义域,则无此性质)

▲⑨ysinx不是周期函数;ysinx为周期函数(T);y▲yx1/2x高三数学总复习三角函数

y=cos|x|图象y=|cos2x+1/2|图象;ycosx为周期函数(T);ycosx是周期函数(如图)

ycos2x1的周期为(如图),并非所有周期函数都有最小正周期,例如:

2yf(x)5f(xk),kR.

⑩yacosbsina2b2sin()cos11、三角函数图象的作法:1)、几何法:

b有a2b2y.a2)、描点法及其特例五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线).

3)、利用图象变换作三角函数图象.

三角函数的图象变换有振幅变换、周期变换和相位变换等.

函数y=Asin(ωx+φ)的振幅|A|,周期T2,频率f1||,相位x;初相||T2(即当x=0时的相位).(当A>0,ω>0时以上公式可去绝对值符号),

由y=sinx的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y=Asinx的图象,叫做振幅变换或叫沿y轴的伸缩变换.(用y/A替换y)

由y=sinx的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的|1|倍,得到y=sinωx的图象,叫做周期变换或叫做沿x轴的伸缩变换.(用ωx

替换x)

由y=sinx的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y=sin(x+φ)的图象,叫做相位变换或叫做沿x轴方向的平移.(用x+φ替换x)

由y=sinx的图象上所有的点向上(当b>0)或向下(当b<0)平行移动|b|个单位,得到y=sinx+b的图象叫做沿y轴方向的平移.(用y+(-b)替换y)

由y=sinx的图象利用图象变换作函数y=Asin(ωx+φ)(A>0,ω>0)(x∈R)的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x轴量伸缩量的区别。

4、反三角函数:函数y=sinx,的反函数叫做反正弦函数,记作x2,2y=arcsinx,它的定义域是[-1,

1],值域是-,.

22函数y=cosx,(x∈[0,π])的反应函数叫做反余弦函数,记作y=arccosx,它的定义域是[-1,1],值域是[0,π].

函数y=tanx,记作的反函数叫做反正切函数,x2,222y=arctanx,它的定义域是(-

∞,+∞),值域是,.

高三数学总复习三角函数函数y=ctgx,[x∈(0,π)]的反函数叫做反余切函数,记作y=arcctgx,它的定义域是(-∞,+∞),值域是(0,π).

II.竞赛知识要点

一、反三角函数.

1.反三角函数:反正弦函数yarcsinx是奇函数,故arcsin(x)arcsinx,x1,1(一定要注明定义域,若x,,没有x与y一一对应,故ysinx无反函数)注:sin(arcsinx)x,x1,1,arcsinx,.

22反余弦函数yarccosx非奇非偶,但有arccos(x)arccos(x)2k,x1,1.注:①cos(arccosx)x,x1,1,arccosx0,.

②ycosx是偶函数,yarccosx非奇非偶,而ysinx和yarcsinx为奇函数.反正切函数:yarctanx,定义域(,),值域(arctan(x)arctanx,x(,).

22,),ynatcrax是奇函数,

注:tan(arctanx)x,x(,).

反余切函数:yarccotx,定义域(,),值域(arotc,yc,)

22x是非奇非偶.

arccot(x)arccot(x)2k,x(,).注:①cot(arccotx)x,x(,).

1x)互为奇函数,yarctanx同理为奇而yarccosx与yarccotx②yarcsinx与yarcsin(非奇非偶但满足arccos(x)arccosx2k,x[1,1]arccotxarccot(x)2k,x[1,1].

正弦、余弦、正切、余切函数的解集:

a的取值范围解集a的取值范围解集①sinxa的解集②cosxa的解集

a>1=1x|x2karcsai,nkZ<1x|xk1karcsina,kZ

aa>1

a=1x|x2karccosa,kZ

aa<1x|xkarccosa,kZ

③tanxa的解集:x|xkarctana,kZ③coxta的解集:x|xkarccoat,kZ二、三角恒等式.

sin2n1组一ncoscos2cos4...cos2n12sin

组二

sin33sin4sin3cos34cos33cossin2sin2sinsincos2cos2k1ncos2kcos2cos4cos8cos2nsin2sinn2n

高三数学总复习三角函数cos(xkd)cosxcos(xd)cos(xnd)k0nsin((n1)d)cos(xnd)

sindk0nsin(xkd)sinxsin(xd)sin(xnd)sin((n1)d)sin(xnd)

sindtan()tantantantantantan

1tantantantantantan组三三角函数不等式

sinx<x<tanx,x(0,2)f(x)sinx在(0,)上是减函数x若ABC,则x2y2z22yzcosA2xzcosB2xycosC

高三数学总复习三角函数

友情提示:本文中关于《高中数学函数知识总结》给出的范例仅供您参考拓展思维使用,高中数学函数知识总结:该篇文章建议您自主创作。

来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。


高中数学函数知识总结》由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
链接地址:http://www.bsmz.net/gongwen/628384.html
相关文章