荟聚奇文、博采众长、见贤思齐
当前位置:公文素材库 > 计划总结 > 工作总结 > 高中数学函数知识点总结

高中数学函数知识点总结

网站:公文素材库 | 时间:2019-05-28 22:39:34 | 移动端:高中数学函数知识点总结

高中数学函数知识点总结

高中数学函数知识点总结

(1)高中函数公式的变量:因变量,自变量。

在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

(2)一次函数:①若两个变量,间的关系式可以表示成

(为

常数,不等于0)的形式,则称是的一次函数。②当=0时,称是的正比例函数。

(3)高中函数的一次函数的图象及性质

①把一个函数的自变量与对应的因变量的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数=的图象是经过原点的一条直线。

③在一次函数中,当0,O,则经2、3、4象限;当0,0时,则经1、2、4象限;当0,0时,则经1、3、4象限;当0,0时,则经1、2、3象限。

④当0时,的值随值的增大而增大,当0时,的值随值的增大而减少。

(4)高中函数的二次函数:①一般式:

(

),对称轴是

顶点是②顶点式:③交点式:

;((

),对称轴是),其中(

顶点是),(

;)是抛物线

与x轴的交点

(5)高中函数的二次函数的性质①函数

的图象关于直线

对称。

②时,在对称轴()左侧,值随值的增大而减少;在对

称轴()右侧;的值随值的增大而增大。当时,取得最小值

③时,在对称轴()左侧,值随值的增大而增大;在对

称轴()右侧;的值随值的增大而减少。当时,取

得最大值

9高中函数的图形的对称

(1)轴对称图形:①如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。②轴对称图形上关于对称轴对称的两点确定的线段被对称轴垂直平分。

(2)中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

扩展阅读:高中数学三角函数知识点总结实用版[1]

高中数学第四章-三角函数

1.①与(0°≤<360°)终边相同的角的集合(角与角的终边重合):

|k360,kZ

▲y2sinx1cosxcosx②终边在x轴上的角的集合:|k180,kZ③终边在y轴上的角的集合:|k18090,kZ④终边在坐标轴上的角的集合:|k90,kZ⑤终边在y=x轴上的角的集合:|k18045,kZ⑥终边在yx轴上的角的集合:|k18045,kZ

3sinx4cosxcosx1sinx2sinx3x4SIN\\COS三角函数值大小关系图1、2、3、4表示第一、二、三、四象限一半所在区域⑦若角与角的终边关于x轴对称,则角与角的关系:360k⑧若角与角的终边关于y轴对称,则角与角的关系:360k180⑨若角与角的终边在一条直线上,则角与角的关系:180k⑩角与角的终边互相垂直,则角与角的关系:360k902.角度与弧度的互换关系:360°=2180°=1°=0.017451=57.30°=57°18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.

、弧度与角度互换公式:1rad=180°≈57.30°=57°18.1°=≈0.01745(rad)

1803、弧长公式:l2||r.扇形面积公式:s扇形lr||r

12124、三角函数:设是一个任意角,在的终边上任取(异于原点的)一点P(x,y)P与原点的距离为r,则siny;rya的终边P(x,y)ryxcos;tanxr;cotx;secr;.cscr.yxyox5、三角函数在各象限的符号:(一全二正弦,三切四余弦)++ox--正弦、余割y-+o-+x余弦、正割y-+ox+-正切、余切OyyPTMAx

16.几个重要结论:(1)y6、三角函数线

正弦线:MP;余弦线:OM;正切线:AT.

高三数学总复习三角函数

(2)y|sinx|>|cosx|sinx>cosxOx|cosx|>|sinx|O|cosx|>|sinx|xcosx>sinx|sinx|>|cosx|(3)若o

7.三角函数的定义域:三角函数f(x)sinxf(x)cosxf(x)tanxf(x)cotxf(x)secxf(x)cscx定义域x|xRx|xR1x|xR且xk,kZ2x|xR且xk,kZ1x|xR且xk,kZ2x|xR且xk,kZcoscoscotsin8、同角三角函数的基本关系式:sintan

cos1tancot1cscsin1sec

sin2cos21sec2tan21csc2cot21

9、诱导公式:

把k的三角函数化为的三角函数,概括为:2“奇变偶不变,符号看象限”

三角函数的公式:(一)基本关系

公式组一公式组二公式组三sinxsin(2kx)sinxsin(x)sinxsinxcscx=1tanx=sin2x+cos2x=1cosxcos(2kx)cosxcos(x)cosxcosx2

x=cosxsecx=11+tanx=sec2xtan(2kx)tanxtan(x)tanxsinxcot(2kx)cotxcot(x)coxttanxcotx=11+cot2x=csc2x公式组四公式组五公式组六sin(x)sinxsin2(x)sinxsin(x)sinxcos(x)cosxcos2(x)cosxcos(x)cosx

tan(x)tanxtan2(x)tanxtan(x)tanxcot(x)cotxcot2(x)coxtcot(x)coxt(二)角与角之间的互换

公式组一公式组二

22sincoscos()coscossinsinsin2sco2ssi2n2co2s112sincos()coscossinsinco2sin()sincoscossintan22tan1tan2

sin()sincoscossinsin21cos2tan()tantan1coscos

1tantan22高三数学总复习三角函数tan()tantantan1cossin1cos1tantan21cos1cossin公式组三公式组四公式组五11sinsincos()sin2tan222sin1cossinsinsin11tan2sin()cos2221coscoscoscos122tan()cot1tan122sinsincoscoscos211tan2cos()sin2sinsin2sincos2221sinsin2cossintan()cot2tan2222tancoscos2coscos11tan222sin()cos22coscos2sinsin2262,,tan15cot7523,.tan75cot1523sin15cos75sincos4sin75cos1562

4

10.正弦、余弦、正切、余切函数的图象的性质:定义域值域周期性奇偶性单调性ysinxycosxR[1,1]ytanx1x|xR且xk,kZ2ycotxx|xR且xk,kZRyAsinx(A、>0)RR[1,1]RA,A当0,非奇非偶当0,奇函数2k2k2(A),12(A)2奇函数22偶函数[2k1,2k]奇函数k,k22奇函数[22k,;k,k1上为减函数(kZ)22k]上为增函数;[2k,232k]2上为增函数[2k,2k1]上为减函数(kZ)上为增函数(kZ)上为增函数;2k上为减函数(kZ)2(A),32k2(A)上为减函数高三数学总复习三角函数(kZ)注意:①ysinx与ysinx的单调性正好相反;ycosx与ycosx的单调性也同样相反.一般地,若yf(x)在[a,b]上递增(减),则yf(x)在[a,b]上递减(增).

▲②ysinx与ycosx的周期是.

x)或ycos(x)(0)的周期T③ysin(2y.

Oxxytan的周期为2(TT2,如图,翻折无效).

2x)的对称轴方程是xk④ysin(2(cs(kZ),对称中心(k,0);yox)的

对称轴方程是xk(kZ),对称中心(k1,0);yant(2(x)的对称中心

k.,0)2ycos2x原点对称ycos(2x)cos2x

tan1,k⑤当tan

2tan1,k(kZ);tan

2(kZ).

⑥ycosx与ysinx2k是同一函数,而y(x)是偶函数,则

21y(x)sin(xk)cos(x).

2⑦函数ytanx在R上为增函数.(×)[只能在某个单调区间单调递增.若在整个定义域,

ytanx为增函数,同样也是错误的].

⑧定义域关于原点对称是f(x)具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:f(x)f(x),奇函数:f(x)f(x))

1奇偶性的单调性:奇同偶反.例如:ytanx是奇函数,ytan(x)是非奇非偶.(定

3义域不关于原点对称)

奇函数特有性质:若0x的定义域,则f(x)一定有f(0)0.(0x的定义域,则无此性质)

▲⑨ysinx不是周期函数;ysinx为周期函数(T);y▲yx1/2x高三数学总复习三角函数

y=cos|x|图象y=|cos2x+1/2|图象;ycosx为周期函数(T);ycosx是周期函数(如图)

ycos2x1的周期为(如图),并非所有周期函数都有最小正周期,例如:

2yf(x)5f(xk),kR.

⑩yacosbsina2b2sin()cos11、三角函数图象的作法:1)、几何法:

b有a2b2y.a2)、描点法及其特例五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线).

3)、利用图象变换作三角函数图象.

三角函数的图象变换有振幅变换、周期变换和相位变换等.

函数y=Asin(ωx+φ)的振幅|A|,周期T2,频率f1||,相位x;初相||T2(即当x=0时的相位).(当A>0,ω>0时以上公式可去绝对值符号),

由y=sinx的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y=Asinx的图象,叫做振幅变换或叫沿y轴的伸缩变换.(用y/A替换y)

由y=sinx的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的|1|倍,得到y=sinωx的图象,叫做周期变换或叫做沿x轴的伸缩变换.(用ωx

替换x)

由y=sinx的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y=sin(x+φ)的图象,叫做相位变换或叫做沿x轴方向的平移.(用x+φ替换x)

由y=sinx的图象上所有的点向上(当b>0)或向下(当b<0)平行移动|b|个单位,得到y=sinx+b的图象叫做沿y轴方向的平移.(用y+(-b)替换y)

由y=sinx的图象利用图象变换作函数y=Asin(ωx+φ)(A>0,ω>0)(x∈R)的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x轴量伸缩量的区别。

4、反三角函数:函数y=sinx,的反函数叫做反正弦函数,记作x2,2y=arcsinx,它的定义域是[-1,

1],值域是-,.

22函数y=cosx,(x∈[0,π])的反应函数叫做反余弦函数,记作y=arccosx,它的定义域是[-1,1],值域是[0,π].

函数y=tanx,记作的反函数叫做反正切函数,x2,222y=arctanx,它的定义域是(-

∞,+∞),值域是,.

高三数学总复习三角函数函数y=ctgx,[x∈(0,π)]的反函数叫做反余切函数,记作y=arcctgx,它的定义域是(-∞,+∞),值域是(0,π).

II.竞赛知识要点

一、反三角函数.

1.反三角函数:反正弦函数yarcsinx是奇函数,故arcsin(x)arcsinx,x1,1(一定要注明定义域,若x,,没有x与y一一对应,故ysinx无反函数)注:sin(arcsinx)x,x1,1,arcsinx,.

22反余弦函数yarccosx非奇非偶,但有arccos(x)arccos(x)2k,x1,1.注:①cos(arccosx)x,x1,1,arccosx0,.

②ycosx是偶函数,yarccosx非奇非偶,而ysinx和yarcsinx为奇函数.反正切函数:yarctanx,定义域(,),值域(arctan(x)arctanx,x(,).

22,),ynatcrax是奇函数,

注:tan(arctanx)x,x(,).

反余切函数:yarccotx,定义域(,),值域(arotc,yc,)

22x是非奇非偶.

arccot(x)arccot(x)2k,x(,).注:①cot(arccotx)x,x(,).

1x)互为奇函数,yarctanx同理为奇而yarccosx与yarccotx②yarcsinx与yarcsin(非奇非偶但满足arccos(x)arccosx2k,x[1,1]arccotxarccot(x)2k,x[1,1].

正弦、余弦、正切、余切函数的解集:

a的取值范围解集a的取值范围解集①sinxa的解集②cosxa的解集

a>1=1x|x2karcsai,nkZ<1x|xk1karcsina,kZ

aa>1

a=1x|x2karccosa,kZ

aa<1x|xkarccosa,kZ

③tanxa的解集:x|xkarctana,kZ③coxta的解集:x|xkarccoat,kZ二、三角恒等式.

sin2n1组一ncoscos2cos4...cos2n12sin

组二

sin33sin4sin3cos34cos33cossin2sin2sinsincos2cos2k1ncos2kcos2cos4cos8cos2nsin2sinn2n

高三数学总复习三角函数cos(xkd)cosxcos(xd)cos(xnd)k0nsin((n1)d)cos(xnd)

sindk0nsin(xkd)sinxsin(xd)sin(xnd)sin((n1)d)sin(xnd)

sindtan()tantantantantantan

1tantantantantantan组三三角函数不等式

sinx<x<tanx,x(0,2)f(x)sinx在(0,)上是减函数x若ABC,则x2y2z22yzcosA2xzcosB2xycosC

高三数学总复习三角函数

友情提示:本文中关于《高中数学函数知识点总结》给出的范例仅供您参考拓展思维使用,高中数学函数知识点总结:该篇文章建议您自主创作。

来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。


高中数学函数知识点总结》由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
链接地址:http://www.bsmz.net/gongwen/628387.html