荟聚奇文、博采众长、见贤思齐
当前位置:公文素材库 > 计划总结 > 工作总结 > 初一数学知识点归纳总结3

初一数学知识点归纳总结3

网站:公文素材库 | 时间:2019-05-29 06:17:17 | 移动端:初一数学知识点归纳总结3

初一数学知识点归纳总结3

初一数学上册知识点归纳总结

一:有理数

知识网络:概念、定义:

1、大于0的数叫做正数(positivenumber)。

2、在正数前面加上负号“-”的数叫做负数(negativenumber)。3、整数和分数统称为有理数(rationalnumber)。

4、人们通常用一条直线上的点表示数,这条直线叫做数轴(numberaxis)。5、在直线上任取一个点表示数0,这个点叫做原点(origin)。

6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue)。7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

8、正数大于0,0大于负数,正数大于负数。9、两个负数,绝对值大的反而小。10、有理数加法法则

(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

(3)一个数同0相加,仍得这个数。

11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。

12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

13、有理数减法法则

减去一个数,等于加上这个数的相反数。14、有理数乘法法则

两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。

15、有理数中仍然有:乘积是1的两个数互为倒数。

16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

19、有理数除法法则

除以一个不等于0的数,等于乘这个数的倒数。

20、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

21、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。在an中,a叫做底数(basenumber),n叫做指数(exponeht)

22、根据有理数的乘法法则可以得出

负数的奇次幂是负数,负数的偶次幂是正数。

显然,正数的任何次幂都是正数,0的任何次幂都是0。23、做有理数混合运算时,应注意以下运算顺序:(1)先乘方,再乘除,最后加减;

(2)同级运算,从左到右进行;

(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

24、把一个大于10数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。

25、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximatenumber)。

26、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significantdigit)

二:整式的加减知识网络:概念、定义:

1、都是数或字母的积的式子叫做单项式(monomial),单独的一个数或一个字母也是单项式。

2、单项式中的数字因数叫做这个单项式的系数(coefficient)。3、一个单项式中,所有字母的指数的和叫做这个单项式的次数(degreeofamonomial)。4、几个单项的和叫做多项式(polynomial),其中,每个单项式叫做多项式的项(term),不含字母的项叫做常数项(constantly

term)。

5、多项式里次数最高项的次数,叫做这个多项式的次数(degreeofapolynomial)。6、把多项式中的同类项合并成一项,叫做合并同类项。

合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。7、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;8、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。9、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。三:一元一次方程知识网络:概念、定义:

1、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式方程(equation)。

2、含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程(linearequationwithoneunknown)。

3、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。

4、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

5、等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。6、把等式一边的某项变号后移到另一边,叫做移项。

7、应用:行程问题:s=v×t工程问题:工作总量=工作效率×时间盈亏问题:利润=售价-成本利率=利润÷成本×100%

售价=标价×折扣数×10%储蓄利润问题:利息=本金×利率×时间本息和=本金+利息三:图形初步认识知识网络:概念、定义:

1、我们把实物中抽象的各种图形统称为几何图形(geometricfigure)。

2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solidfigure)。

3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(planefigure)。

4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图(net)。

5、几何体简称为体(solid)。6、包围着体的是面(surface),面有平的面和曲的面两种。7、面与面相交的地方形成线(line),线和线相交的地方是点(point)。8、点动成面,面动成线,线动成体。

9、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。简述为:两点确定一条直线(公理)。

10、当两条不同的直线有一个公共点时,我们就称这两条直线相交(intersection),这个公共点叫做它们的交点(pointofintersection)。

11、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点(center)。12、经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短。简单说成:两点之间,线段最短。(公理)

13、连接两点间的线段的长度,叫做这两点的距离(distance)。14、角∠(angle)也是一种基本的几何图形。

15、把一个周角360等分,每一份就是1度(degree)的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。

16、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线(angularbisector)。

17、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementaryangle),即其中的每一个角是另一个角的余角。18、如果两个角的和等于180°(平角),就说这两个角互为补角(supplementaryangle),即其中一个角是另一个角的补角19、等角的补角相等,等角的余角相等。

扩展阅读:中考数学知识点归纳总结

初中数学总复习知识点

1.数的分类及概念:整数和分数统称有理数(有限小数和无限循环小数),像√3,π,0.101001叫无理数;有理数和无理数统称实数。实数按正负也可分为:正整数、正分数、0、负整数、负分数,正无理数、负无理数。

n2.自然数(0和正整数);奇数2n-1、偶数2n、质数、合数。科学记数法:a10(1≤a<10,n是整数),有效数字。3.(1)倒数积为1;(2)相反数和为0,商为-1;(3)绝对值是距离,非负数。4.数轴:①定义(“三要素”);②点与实数的一一对应关系。(2)性质:若干个非负数的和为0,则每个非负数均为0。

5非负数:正实数与零的统称。(表为:x≥0)(1)常见的非负数有:6.去绝对值法则:正数的绝对值是它本身,“+()”;零的绝对值是零,“0”;负数的绝对值是它的相反数,“-()”。

7.实数的运算:加、减、乘、除、乘方、开方;运算法则,定律,顺序要熟悉。

38.代数式,单项式,多项式。整式,分式。有理式,无理式。根式。a29.同类项。合并同类项(系数相加,字母及字母的指数不变)。10.算术平方根:a(正数a的正的平方根);平方根:

11.(1)最简二次根式:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式;

(2)同类二次根式:化为最简二次根式以后,被开方数相同的二次根式;(3)分母有理化:化去分母中的根号。

12.因式分解方法:把一个多项式化成几个整式的积的形式A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法。

n13.指数:n个a连乘的式子记为(其中a称底数,na称指数,称作幂。)an。

正数的任何次幂为正数;负数的奇次幂为负数,负数的偶次幂为正数。

bpapanbnn;⑤an14.幂的运算性质:①aman=am+n;②am÷an=am-n;③(am)n=amn;④(ab)n(=a()())nabbbbbmbbb15.分式的基本性质==(m≠0);符号法则:aamaaa

16.乘法公式:(a+b)(a-b)=a2-b2;(a+b)2=a2+2ab+b2;a2-b2=(a+b)(a-b);a2+2ab+b2=(a+b)2

aa0,b≥0);④22a17.算术根的性质:①=;②;③(a≥(a)a(a0)abababb(a≥0,b>0)

18.统计初步:通常用样本的特征去估计总体所具有的特征。(1).总体,个体,样本,样本容量(样本中个体的数目)。

(2)众数:一组数据中,出现次数最多的数据。平均数:平均数是刻划数据的集中趋势(集中位置)的特征数。

中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)①1;②x1f1x2f2xkfkx(x1x2xn)x(f1f2fkn)nn""""③若x1a,x2a,,xnxn,x;x则ax1x2a(3)极差:样本中最大值与最小值的差。它是刻划样本中数据波动范围的大小。

1222方差:方差是刻划数据的波动大小的程度。s2[(x1x)(x2x)(xnx)]n标准差:ss2(4)调查:普查:具有破坏性、特大工作量的往往不适合普查;抽样调查:抽样时要主要样本的代表性和广泛性。

(5)频数、频率、频数分布表及频数分布直方图:19.概率:用来预测事件发生的可能性大小的数学量

(1)P(必然事件)=1;P(不可能事件)=0;0〈P(不确定事件A)〈1。(2)树形图或列表分析求等可能性事件的概率:;

(3)游戏公平性是指双方获胜的概率的大小是否相等(“牌,球”游戏中放回与不放回的概率是不同的)。20.(1)两点之间,线段最短(两点之间线段的长度,叫做这两点之间的距离);

(2)点到直线之间,垂线段最短(点到直线的垂线段的长度叫做点到直线之间的距离);(3)两平行线之间的垂线段处处相等(这条垂线段的长度叫做两平行线之间的距离);(4)同平行于一条直线的两条直线平行(传递性);(5)同垂直于一条直线的两条直线平行。

21.性质:在垂直平分线上的点到该线段两端点的距离相等;判定:到线段两端点距离相等的点在这线段的垂直平分线上。

22.性质定理:角平分线上的点到该角两边的距离相等;判定定理:到角的两边距离相等的点在该角的角平分线上。

23.同角或等角的余角(或补角)相等。

24.性质:两直线平行,同位角(内错角)相等,同旁内角互补;判定:同位角(内错角)相等(同旁内角互补),

两直线平行。

25.三角形分锐角三角形、直角三角形、钝角三角形或等腰三角形、不等边三角形。

①三角形三个内角的和等于180度;任意一个外角等于和它不相邻的两个内角的和;②第三边大于两边之和,小于两边之差;

③重心:三条中线的交点;垂心:三条高线的交点;外心:三边中垂线的交点;内心:三角平分线线的交点。

④直角三角形斜边上的中线等于斜边的一半;一边上的中线等于该边一半的三角形是直角三角形。⑤勾股定理:直角三角形两直角边的平方和等于斜边的平方;逆定理也成立。⑥300角所对的边等于斜边的一半;Rt△中,等于斜边的一半的边所对的角是300。

26.全等三角形:①全等三角形的对应边,角相等。②条件:SSS、AAS、ASA、SAS、HL。

27.等腰三角形:在一个三角形中①等边对等角;②等角对等边;③三线合一;④有一个600角的三角形是等边三角形。

28.三角形的中位线平行于第三边并且等于第三边的一半;梯形的中位线平行于两底并且等于两底和的一半

.00

29.n边形的内角和为(n-2)180,外角和为360,正n边形的每个内角等于。30.平行四边形的性质:①两组对边分别平行且相等;②两组对角分别相等;③两条对角线互相平分。

判定:①两组对边分别平行;②两组对边分别相等;③一组对边平行且相等;④两组对角分别相等;⑤两条对角线互相平分。

31特殊的平行四边形:矩形、菱形与正方形。

32.梯形:一组对边平行而另一组对边不平行的四边形。

梯形可分①直角梯形②等腰梯形。等腰梯形同一底上的两个内角相等;等腰梯形的对角线相等。33.梯形常用辅助线:

34.平面图形的密铺(镶嵌):同一顶点的角之和为3600。35.轴对称:翻转1800能重合;中心对称(图形):旋转180度能重合。36.命题(题设和结论)、定义、公理、定理;原命题,逆命题;真命题,假命题;反证法。

37.①轴对称变换:对应点所连的线段被对称轴垂直平分;对应线段,对应角相等。

②图形的平移:对应线段,对应点所连线段平行(或在同一直线上)且相等;对应角相等;平移方向和距离是它的两要素。

③图形的旋转:每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。旋转的方向、角度、旋转中心是它的三要素。④位似图形:它们具有相似图形的性质外还有图形的位置关系(每组对应点所在的直线都经过同一个点位似中心);对应点到位似中心的距离比就是位似比,对应线段的比等于位似比,位似比也有顺序;已知图形的位似图形有两个,在位似中心的两侧各有一个。位似中心,位似比是它的两要素。38.相似图形:形状相同,大小不一定相同(放大或缩小)。

(1)判定①平行;②两角相等;③两边对应成比例,夹角相等;④三边对应成比例。

(2)对应线段比等于相似比;对应高之比等于相似比;对应周长比等于相似比;面积比等于相似比的平方。

(3)比例的基本性质:若,则ad=bc;(d称为第四比例项)

比例中项:若,则。(b称为a、c的比例中项;c称为第三比例项)

(4)黄金分割:线段AB被点C黄金分割(AC0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△b←→a+c>b+c⑵a>b←→ac>bc(c>0)⑶a>b←→acc→a>c⑸a>b,c>d→a+c>b+d.(用文字怎么叙述?)

(5)一元一次不等式的解、解一元一次不等式。(乘除负数要变方向,但要注意乘除正数不要要变方向)(6)一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集)

42.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系;(1)坐标平面内的点与一个有序实数对之间是一一对应的。(2)两点间的距离:AB=Xa-Xb;CD=Yc-Yd;。(3)X轴上Y=0;Y轴上X=0;一、三象限角平分线,Y=X;二、四象限角平分线,Y=-X。

(4)P(a,b)关于X轴对称P’(a,-b);关于Y轴对称P’’(a,-b);关于原点对称P’’’(-a,-b).

43.函数定义:44.表示法:⑴解析法;⑵列表法;⑶图象法。描点法:⑴列表;⑵描点;⑶连线。45.自变量取值范围:①分母≠0;②被开方数≥0;③几何图形成立;④实际有意义46.正比例函数⑴y=kx(k≠0)

yyyy⑵图象:直线(过原点)

⑶性质:①k>0,②k0,b>0⑶性质:①k>0,②k0,b(10)切线长定理从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切

线的夹角

(11)相交两圆的连心线垂直平分公共弦;相切两圆的连心线必过切点;

51.(1)视点,视线,视角,盲区;投射线,投影,投影面.(投影类的题目常与全等、相似、三角函数结合进行相关的计算。)

(2)中心投影:远光线(太阳光线);平行投影:近光线(路灯光线)。

(3)三视图:主视图,俯视图,左视图。看不见的轮廓线要画成虚线,线段要保持原长或标明比例尺。52.

53.面积问题:①同底(或同高),面积比等于高(或底)之比;②相似图形的面积比等于相似比的平方。54.尺规作图:线段要截,角用弧作,角平分线、垂直平分线须熟记,外接圆、内切圆也不忘。

友情提示:本文中关于《初一数学知识点归纳总结3》给出的范例仅供您参考拓展思维使用,初一数学知识点归纳总结3:该篇文章建议您自主创作。

来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。


初一数学知识点归纳总结3》由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
链接地址:http://www.bsmz.net/gongwen/667927.html