三角形垂心的性质总结
三角形垂心的性质总结
山西省原平市第一中学任所怀
三角形的垂心定理:在三角形ABC中,求证:它的三条高交于一点。
证明:如图:作BE
于点E,CFAB于点F,且BE交CF于点H,连接AH并
延长交BC于点D。现在我们只要证明ADBC即可。
因为CFAB,BE
所以四边形BFEC为圆内接四边形。四边形AFHE为圆内接四边形。所以∠FAH=∠FEH=∠FEB=∠FCB由∠FAH=∠FCB得
四边形AFDC为圆内接四边形所以∠AFC=∠ADC=90°即ADBC。
点评:以上证明主要应用了平面几何中的四点共圆的判定与性质。三角形垂心的性质定理1:
锐角三角形的垂心是以三个垂足为顶点的三角形的内心。
如上图,在三角形ABC中,AD、CF、BE分别为BC、AB、AC上的高,D、F、E分别为垂足,H为三角形ABC的垂心。求证:H为三角形DFE的内心。
证明:要证H为三角形DFE的内心,只需证明HF、HE、HD分别平分∠DFE、∠FED、∠EDF。
同样我们还是利用四点共圆的判定与性质来证明。
由BCEF四点共圆得∠EFC=∠EBC(都是弧CE所对的圆周角)
由HFBD四点共圆得∠HFD=∠HBD=∠EBC(都是弧HD所对的圆周角)
所以∠EFH=∠HFD所以HF平分∠EFD。同理HE平分∠FED;HD平分∠FDE所以H为三角形DFE的内心。
点评:以上两个问题都用到了四点共圆。因为在这个图形中共可得到6个圆内接四边形,你不妨找一找。
三角形垂心的向量表示:
在心。
中,若点O满足
,则点O为三角形ABC的垂证明:由同理OB
,得,则点O为垂心。
,所以。
三角形垂心性质定理2:
若三角形的三个顶点都在函数证明:设点O(x,y)为
的图象上,则它的垂心也在这个函数图象上。
的垂心,则上面的向量表示得
因为的三个顶点都在函数的图象上,所以设,
因为,所以
所以
所以(1)
同理:由得(2)
联立(1)(2)两式,就可解出
显然有垂心O在函数的图象上。
点评:此题恰当地应用了垂心的向量表示,把几何问题转化成了代数问题,完美体现了数形结合的数学思想。
(201*年全国一卷理科)
的外接圆的圆心为O,两条边上的高的交点为H,
,则实数m=
分析:H显然为
的垂心,我们可取特殊情况来猜想m的值。于是我取
为直角三角形,角A为直角,此时H点与A点重合,且O为BC的中点(如图所示)。此时
,于是猜想m=1.
而对于一般情况,上面问题,我们不妨称之为三角形的垂心性质定理3:
的外心为O,垂心为H,则
证明:作出
。的外接圆和外接圆直径AD,连接BD,CD。
,。因为直径所对圆周角为直角,所以有因为H为
的垂心,所以
所以HC//BD,BH//DC,所以四边形BDCH为平行四边形,所以
因为所以
。,且
点评:这条性质联系了三角形的外心与垂心,所得向量关系也相当简洁。以此为背景出高考题,也确实体现了命题者深厚的知识功底。三角形垂心性质定理3:
三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。即:
的外心为O,垂心为H,D为BC中点,则AH=2OD。
证明:因为D为BC中点所以由性质2知:
得所以AH=2OD。
点评:性质定理3,也可看做是性质定理2的推论。三角形垂心性质定理4:
锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。分析:应用上面的性质定理3,上面这一结论可改为
锐角三角形的外接圆与内切圆径之和等于外心到三角形三边距离之和。
即:如图在锐角
中,O为外心,D,E,F分别为三边的中点。设外接圆半径
为R,内切圆半径为r,则OD+OE+OF=R+r.
证明:在锐角
,中,O为外心,D,E,F分别为三边的中点,则OF
,所以有
=设中角A,B,C所对边的长分别为a,b,c.
=2C
在圆O中,弧AB所对的圆心角又因OA=OB,OF
,所以
OF=OA*cosC=RcosC。
同理OD=R*cosB,OE=R*cosA
所以
而由三角形内切圆的性质知:所以
这个式子就指出了内切圆半径与外接圆半径的关系。
而要证OD+OE+OF=R+r,
需证:RcosA+RcosB+RcosC=R+即需证
需证(b+c)cosA+(a+c)cosB+(a+b)cosC=a+b+c
而对上式的证明我们可采用正弦定理,化角为边,即需证:
sinBcosA+sinCcosA+sinAcosB+sinCcosB+sinAcosC+sinBcosC=sinA+sinB+sinC需证:sin(A+B)+sin(A+C)+sin(B+C)=sinA+sinB+sinC
而因为A+B+C=所以sin(A+B)+sin(A+C)+sin(B+C)=sinA+sinB+sinC显然成立所以命题得证。
点评:此题的证明充分联系我们初高中的大量知识,真是做到了“八方联系,浑然一体”(孙维刚老师语)。通过这样的一个问题,我们的数学能力将大大提高。
三角形垂心性质定理5:
H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一垂心组)。
此定理的证明相对简单,读者不妨自已试试。在此提出这个性质,主要是看到这里存在的一种广义对称性,即四个点中每一点都可为垂心。这个结论进一步提醒我们要经常换个角度相问题。三角形垂心性质定理6:
H为△ABC的垂心,则△ABC,△ABH,△BCH,△ACH的外接圆是等圆。分析:要证两圆为等圆,只要证明它们的半径(或直径)相等就可以啦。而这两圆都是三角形的外接圆,于是我们就想到了正弦定理。
的直径为
因为HD
,,的直径为,
所以四边形BEHD是圆内接四边形
所以所以sinB=sin
所以
所以
=,的外接圆为等圆。
同理△ABC,△ABH,△BCH,△ACH的外接圆是等圆。证明略。
点评:该题的证明过程中,应用到了性质1中的圆内接四边形性质和正弦定理。这也正是在提示我们要注意八方联系。
以上我对与三角形垂心有关的性质做了一些总结,当然也难免还有其它性质,我还没有发现。我写文章的目的,也就是在于启发读者经常进行总结,在总结中我们才会有新的发现和创新。
扩展阅读:三角形垂心的性质总结
三角形垂心的性质总结
山西省原平市第一中学任所怀
三角形的垂心定理:在三角形ABC中,求证:它的三条高交于一点。
证明:如图:作BE
于点E,CFAB于点F,且BE交CF于点H,连接AH并
延长交BC于点D。现在我们只要证明ADBC即可。
因为CFAB,BE
所以四边形BFEC为圆内接四边形。四边形AFHE为圆内接四边形。所以∠FAH=∠FEH=∠FEB=∠FCB由∠FAH=∠FCB得
四边形AFDC为圆内接四边形所以∠AFC=∠ADC=90°即ADBC。
点评:以上证明主要应用了平面几何中的四点共圆的判定与性质。三角形垂心的性质定理1:
锐角三角形的垂心是以三个垂足为顶点的三角形的内心。
如上图,在三角形ABC中,AD、CF、BE分别为BC、AB、AC上的高,D、F、E分别为垂足,H为三角形ABC的垂心。求证:H为三角形DFE的内心。
证明:要证H为三角形DFE的内心,只需证明HF、HE、HD分别平分∠DFE、∠FED、∠EDF。
同样我们还是利用四点共圆的判定与性质来证明。
由BCEF四点共圆得∠EFC=∠EBC(都是弧CE所对的圆周角)
由HFBD四点共圆得∠HFD=∠HBD=∠EBC(都是弧HD所对的圆周角)
所以∠EFH=∠HFD所以HF平分∠EFD。同理HE平分∠FED;HD平分∠FDE所以H为三角形DFE的内心。
点评:以上两个问题都用到了四点共圆。因为在这个图形中共可得到6个圆内接四边形,你不妨找一找。
三角形垂心的向量表示:
在心。
中,若点O满足,则点O为三角形ABC的垂
证明:由同理OB
,得,则点O为垂心。
,所以。
三角形垂心性质定理2:
若三角形的三个顶点都在函数证明:设点O(x,y)为
的图象上,则它的垂心也在这个函数图象上。
的垂心,则上面的向量表示得
因为的三个顶点都在函数的图象上,所以设,
因为,所以
所以
所以(1)
同理:由得(2)
联立(1)(2)两式,就可解出
显然有垂心O在函数的图象上。
点评:此题恰当地应用了垂心的向量表示,把几何问题转化成了代数问题,完美体现了数形结合的数学思想。
(201*年全国一卷理科)
的外接圆的圆心为O,两条边上的高的交点为H,
,则实数m=
分析:H显然为
的垂心,我们可取特殊情况来猜想m的值。于是我取
为直角三角形,角A为直角,此时H点与A点重合,且O为BC的中点(如图所示)。此时
,于是猜想m=1.
而对于一般情况,上面问题,我们不妨称之为三角形的垂心性质定理3:
的外心为O,垂心为H,则
证明:作出
。的外接圆和外接圆直径AD,连接BD,CD。
,。因为直径所对圆周角为直角,所以有因为H为
的垂心,所以
所以HC//BD,BH//DC,所以四边形BDCH为平行四边形,所以
因为所以
。,且
点评:这条性质联系了三角形的外心与垂心,所得向量关系也相当简洁。以此为背景出高考题,也确实体现了命题者深厚的知识功底。
三角形垂心性质定理3:
三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。即:
的外心为O,垂心为H,D为BC中点,则AH=2OD。
证明:因为D为BC中点所以由性质2知:
得所以AH=2OD。
点评:性质定理3,也可看做是性质定理2的推论。三角形垂心性质定理4:
锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。分析:应用上面的性质定理3,上面这一结论可改为
锐角三角形的外接圆与内切圆径之和等于外心到三角形三边距离之和。
即:如图在锐角
中,O为外心,D,E,F分别为三边的中点。设外接圆半径
为R,内切圆半径为r,则OD+OE+OF=R+r.
证明:在锐角
,中,O为外心,D,E,F分别为三边的中点,则OF
,所以有
=设中角A,B,C所对边的长分别为a,b,c.
=2C
在圆O中,弧AB所对的圆心角又因OA=OB,OF
,所以
OF=OA*cosC=RcosC。
同理OD=R*cosB,OE=R*cosA
所以
而由三角形内切圆的性质知:所以
这个式子就指出了内切圆半径与外接圆半径的关系。
而要证OD+OE+OF=R+r,
需证:RcosA+RcosB+RcosC=R+即需证
需证(b+c)cosA+(a+c)cosB+(a+b)cosC=a+b+c
而对上式的证明我们可采用正弦定理,化角为边,即需证:
sinBcosA+sinCcosA+sinAcosB+sinCcosB+sinAcosC+sinBcosC=sinA+sinB+sinC需证:sin(A+B)+sin(A+C)+sin(B+C)=sinA+sinB+sinC
而因为A+B+C=所以sin(A+B)+sin(A+C)+sin(B+C)=sinA+sinB+sinC显然成立所以命题得证。
点评:此题的证明充分联系我们初高中的大量知识,真是做到了“八方联系,浑然一体”(孙维刚老师语)。通过这样的一个问题,我们的数学能力将大大提高。
三角形垂心性质定理5:
H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一垂心组)。
此定理的证明相对简单,读者不妨自已试试。在此提出这个性质,主要是看到这里存在的一种广义对称性,即四个点中每一点都可为垂心。这个结论进一步提醒我们要经常换个角度相问题。
三角形垂心性质定理6:
H为△ABC的垂心,则△ABC,△ABH,△BCH,△ACH的外接圆是等圆。分析:要证两圆为等圆,只要证明它们的半径(或直径)相等就可以啦。而这两圆都是三角形的外接圆,于是我们就想到了正弦定理。
的直径为
因为HD
,,的直径为,
所以四边形BEHD是圆内接四边形
所以所以sinB=sin
所以
所以
=,的外接圆为等圆。
同理△ABC,△ABH,△BCH,△ACH的外接圆是等圆。证明略。
点评:该题的证明过程中,应用到了性质1中的圆内接四边形性质和正弦定理。这也正是在提示我们要注意八方联系。
以上我对与三角形垂心有关的性质做了一些总结,当然也难免还有其它性质,我还没有发现。我写文章的目的,也就是在于启发读者经常进行总结,在总结中我们才会有新的发现和创新。
友情提示:本文中关于《三角形垂心的性质总结》给出的范例仅供您参考拓展思维使用,三角形垂心的性质总结:该篇文章建议您自主创作。
来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。