高中数学易错知识点汇总
快乐学习,尽在苏州中学网校
高中数学易错知识点汇总
为了帮助同学们复习,减少不必要的丢分,苏州中学网特意总结了这一高中数学易错知识点。总结了高中数学常见的错误,供同学们参考。
1.在应用条件A∪B=B,A∩B=A时,易忽略A是空集Φ的情况。2.求解与函数有关的问题易忽略定义域优先的原则,尤其是在与实际生活相联系的应用题中,判断两个函数是否是同一函数也要判断函数的定义域,求三角函数的周期时也应考虑定义域。
3.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称,优先考虑定义域对称。
4.解对数不等式时,易忽略真数大于0、底数大于0且不等于1这一条件。
5.用判别式法求最值(或值域)时,需要就二次项系数是否为零进行讨论,易忽略其使用的条件,应验证最值。
6.用判别式判定方程解的个数(或交点的个数)时,易忽略讨论二次项的系数是否为0。尤其是直线与圆锥曲线相交时更易忽略。
7.用均值定理求最值(或值域)时,易忽略验证“一正(几个数或代数式均是正数)二定(几个数或代数式的和或者积是定值)三等(几个数或代数式相等)”这一条件。
8.用换元法解题时,易忽略换元前后的等价性。9.求反函数时,易忽略求反函数的定义域。
10.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示,而应用逗号连接多个区间。
11.用等比数列求和公式求和时,易忽略公比q=1的情况。12.已知Sn求an时,易忽略n=1的情况。
13.用直线的点斜式、斜截式设直线的方程时,易忽略斜率不存在的情况;题目告诉截距相等时,易忽略截距为0的情况。
14.求含系数的直线方程平行或者垂直的条件时,易忽略直线与x轴或者y轴平行的情况。
15.用到角公式时,易将直线L1、L2的斜率k1、k2的顺序弄颠倒;使用到角公式或者夹角公式时,分母为零不代表无解,而是两直线垂直。
16.在做应用题时,运算后的单位要弄准,不要忘了“答”及变量的取值
快乐学习,尽在苏州中学网校
范围;在填写填空题中的应用题的答案时,不要忘了单位。应用题往往对答案的数值有特殊要求,如许多时候答案必须是正整数。
17.在分类讨论时,分类要做到“不重不漏、层次分明,进行总结”。18.在解答题中,如果要应用教材中没有的重要结论,那么在解题过程中要给出简单的证明,如使用函数y=x+的单调性求某一区间的最值时,应先证明函数y=x+的单调性。
19.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。
20.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即A>B>0,0
快乐学习,尽在苏州中学网校
线与另一个平面内的两条相交直线分别平行"而导致证明过程跨步太大,正确的判定方法是:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
31.函数的图象的平移、方程的平移以及点的平移公式易混:(1)函数的图象的平移为“左+右-,上+下-”;如函数y=2x+4的图象左移2个单位且下移3个单位得到的图象的解析式为y=2(x+2)+4-3。即y=2x+5。
(2)方程表示的图形的平移为“左+右-,上-下+”;如直线2x-y+4=0左移2个单位且下移3个单位得到的图象的解析式为2(x+2)-(y+3)+4=0。即y=2x+5。
(3)点的平移公式:点P(x,y)按向量=(h,k)平移到点P’(x’,y’),则x’=x+h,
y’=y+k。
32.椭圆、双曲线A、B、c之间的关系易记混。对于椭圆应是A2-B2=c2
,对于双曲线应是A2+B2=c2。
33.“属于关系”与“包含关系”的符号易用混,元素与集合的关系用a∈A,集合与集合的关系用AB。
34.“点A在直线A上”与“直线A在平面α上”的符号易用混,如:A∈A,Aα.
35.椭圆和双曲线的焦点在x轴上与焦点在y轴上的焦半径公式易记混;椭圆和双曲线的焦半径公式易记混。它们都可以用其第二定义推导,建议不要死记硬背,用的时候再根据定义推导。
36.两个向量平行与与两条直线平行易混,两个向量平行(也称向量共线)包含两个向量重合,两条直线平行不包含两条直线重合。
37.各种角的范围:
两条异面直线所成的角0°
快乐学习,尽在苏州中学网校
两个向量的夹角0°≤α≤180°锐角0°
扩展阅读:高中数学易错知识点汇总
高中数学易错知识点汇总
为了帮助同学们复习,减少不必要的丢分,苏州中学网特意总结了这一高中数学易错知识点。总结了高中数学常见的错误,供同学们参考。
1.在应用条件A∪B=B,A∩B=A时,易忽略A是空集Φ的情况。2.求解与函数有关的问题易忽略定义域优先的原则,尤其是在与实际生活相联系的应用题中,判断两个函数是否是同一函数也要判断函数的定义域,求三角函数的周期时也应考虑定义域。
3.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称,优先考虑定义域对称。
4.解对数不等式时,易忽略真数大于0、底数大于0且不等于1这一条件。
5.用判别式法求最值(或值域)时,需要就二次项系数是否为零进行讨论,易忽略其使用的条件,应验证最值。
6.用判别式判定方程解的个数(或交点的个数)时,易忽略讨论二次项的系数是否为0。尤其是直线与圆锥曲线相交时更易忽略。
7.用均值定理求最值(或值域)时,易忽略验证“一正(几个数或代数式均是正数)二定(几个数或代数式的和或者积是定值)三等(几个数或代数式相等)”这一条件。
8.用换元法解题时,易忽略换元前后的等价性。9.求反函数时,易忽略求反函数的定义域。
10.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示,而应用逗号连接多个区间。
11.用等比数列求和公式求和时,易忽略公比q=1的情况。12.已知Sn求an时,易忽略n=1的情况。
13.用直线的点斜式、斜截式设直线的方程时,易忽略斜率不存在的情况;题目告诉截距相等时,易忽略截距为0的情况。
14.求含系数的直线方程平行或者垂直的条件时,易忽略直线与x轴或者y轴平行的情况。
15.用到角公式时,易将直线L1、L2的斜率k1、k2的顺序弄颠倒;使用到角公式或者夹角公式时,分母为零不代表无解,而是两直线垂直。
16.在做应用题时,运算后的单位要弄准,不要忘了“答”及变量的取值
范围;在填写填空题中的应用题的答案时,不要忘了单位。应用题往往对答案的数值有特殊要求,如许多时候答案必须是正整数。
17.在分类讨论时,分类要做到“不重不漏、层次分明,进行总结”。18.在解答题中,如果要应用教材中没有的重要结论,那么在解题过程中要给出简单的证明,如使用函数y=x+1的单调性求某一区间的最值时,应先
x证明函数y=x+1的单调性。
x19.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。
20.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即A>B>0,0
线与另一个平面内的两条相交直线分别平行"而导致证明过程跨步太大,正确的判定方法是:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
31.函数的图象的平移、方程的平移以及点的平移公式易混:(1)函数的图象的平移为“左+右-,上+下-”;如函数y=2x+4的图象左移2个单位且下移3个单位得到的图象的解析式为y=2(x+2)+4-3。即y=2x+5。
(2)方程表示的图形的平移为“左+右-,上-下+”;如直线2x-y+4=0左移2个单位且下移3个单位得到的图象的解析式为2(x+2)-(y+3)+4=0。即y=2x+5。
(3)点的平移公式:点P(x,y)按向量=(h,k)平移到点P’(x’,y’),则x’=x+h,
y’=y+k。
32.椭圆、双曲线A、B、c之间的关系易记混。对于椭圆应是A2-B2=c2
,对于双曲线应是A2+B2=c2。
33.“属于关系”与“包含关系”的符号易用混,元素与集合的关系用a∈A,集合与集合的关系用AB。
34.“点A在直线A上”与“直线A在平面α上”的符号易用混,如:A∈A,Aα.
35.椭圆和双曲线的焦点在x轴上与焦点在y轴上的焦半径公式易记混;椭圆和双曲线的焦半径公式易记混。它们都可以用其第二定义推导,建议不要死记硬背,用的时候再根据定义推导。
36.两个向量平行与与两条直线平行易混,两个向量平行(也称向量共线)包含两个向量重合,两条直线平行不包含两条直线重合。
37.各种角的范围:
两条异面直线所成的角0°
两个向量的夹角0°≤α≤180°锐角0°
友情提示:本文中关于《高中数学易错知识点汇总》给出的范例仅供您参考拓展思维使用,高中数学易错知识点汇总:该篇文章建议您自主创作。
来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。