初三《圆》章节知识点汇总
《圆》章节知识点汇总
一、圆的概念集合形式的概念:
1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:
1圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直
平分线(也叫中垂线);
3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;
5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。二、点与圆的位置关系
1、点在圆内dr点C在圆内;2、点在圆上dr点B在圆上;3、点在圆外dr点A在圆外;
-1-
ArBdCdO三、直线与圆的位置关系
1、直线与圆相离dr无交点;2、直线与圆相切dr有一个交点;3、直线与圆相交dr有两个交点;四、圆与圆的位置关系
外离(图1)无交点dRr;外切(图2)有一个交点dRr;相交(图3)有两个交点
rdrdd=rRrdRr;
内切(图4)有一个交点dRr;
内含(图5)无交点dRr;
dR图1rRddr图2R图3r
dRrdrR
图4
图五、垂径定理
垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:
①AB是直径②ABCD③CEDE④弧BC弧BD⑤弧AC弧AD中任意2个条件推出其他3个结论。
CBOEDA③OCOF;④弧BA弧BD七、圆周角定理
1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。即:∵AOB和ACB是弧AB所对的圆心角和圆周角∴AOB2ACB2、圆周角定理的推论:
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;
即:在⊙O中,∵C、D都是所对的圆周角∴CD
推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所
EF推论2:圆的两条平行弦所夹的弧相等。即:在⊙O中,∵AB∥CD∴弧AC弧BD六、圆心角定理
COABACB对的弦是直径。
即:在⊙O中,∵AB是直径或∵C90
DDO∴C90∴AB是直径
CCDC
圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,
即:①AOBDOE;②ABDE;
BOABOABOA
C推论3:若三角形一边上的中线等于这边的一半,
-2-
BOA那么这个三角形是直角三角形。即:在△ABC中,∵OCOAOB
∴△ABC是直角三角形或C90
注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。八、圆内接四边形
以上三个定理及推论也称二推一定理:
即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。
B十、切线长定理
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条
AOP切线的夹角。
圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。即:在⊙O中,
∵四边形ABCD是内接四边形
∴CBAD180BD180
即:∵PA、PB是的两条切线
CDBOPCADCBOEDA∴PAPBPO平分BPA
DAEC
九、切线的性质与判定定理
BAE十一、圆幂定理
(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。即:在⊙O中,∵弦AB、CD相交于点P,
(1)切线的判定定理:过半径外端且垂直于半径的直线是切线;
两个条件:过半径外端且垂直半径,二者缺一不可
MANO∴PAPBPCPD
(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条
即:∵MNOA且MN过半径OA外端∴MN是⊙O的切线
(2)性质定理:切线垂直于过切点的半径(如上图)推论1:过圆心垂直于切线的直线必过切点。推论2:过切点垂直于切线的直线必过圆心。
-3-
线段的比例中项。
A即:在⊙O中,∵直径ABCD,
DEO∴CEAEBE
(3)切割线定理:从圆外一点引圆的
2PCB切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。即:在⊙O中,∵PA是切线,PB是割线∴PAPCPB(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如右图)。
A2(2)正四边形同理,四边形的有关计算在RtOAE中进行,OE:AE:OA1:1::2
(3)正六边形同理,六边形的有关计算在RtOAB中进行,
即:在⊙O中,∵PB、PE是割线
DEOAB:OB:OA1:3:2.
十五、扇形、圆柱和圆锥的相关
C∴PCPBPDPE十二、两圆公共弦定理
圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。如图:O1O2垂直平分AB。
即:∵⊙O1、⊙O2相交于A、B两点∴O1O2垂直平分AB十三、圆的公切线两圆公切线长的计算公式:
PCBO计算公式
1、扇形:(1)弧长公式:lOBAAO1BACO2BO1O2nR;180BAD(2)扇形面积公式:
BCOADnR21SlR
3602n:圆心角R:扇形多对应的圆的半径l:扇形
弧长S:扇形面积
2、圆柱:(1)圆柱侧面展开图
2S表S侧2S底=2rh2r
OSEAB1(1)公切线长:RtO1O2C中,AB2CO12O1O22CO22;
(2)圆柱的体积:Vrh
(2)外公切线长:CO2是半径之差;内公切线长:CO2是半径之和。十四、圆内正多边形的计算
(1)正三角形在⊙O中△ABC是正三角形,有关计算在RtBOD中进行:OD:BD:OB1:3:2;
-4-
2lOR(2)圆锥侧面展开图(1)
BACrBS表S侧S底=Rrr
(2)圆锥的体积:V2ADD1母线长底面圆周长12rh3BCC
扩展阅读:初三《圆》章节知识点总结201*.11.4
《圆》章节知识点复习
《圆》章节知识点复习
一、圆的概念
集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:
1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;
(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫
中垂线);
3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;
4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;
5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系
1、点在圆内dr点C在圆内;2、点在圆上dr点B在圆上;3、点在圆外dr点A在圆外;
三、直线与圆的位置关系
1、直线与圆相离dr无交点;2、直线与圆相切dr有一个交点;3、直线与圆相交dr有两个交点;
ArBdCdOrdd=rrd
《圆》章节知识点复习
四、圆与圆的位置关系
外离(图1)无交点dRr;外切(图2)有一个交点dRr;相交(图3)有两个交点RrdRr;内切(图4)有一个交点dRr;内含(图5)无交点dRr;
dR图1rRdr图2dR图3r
d五、垂径定理
图4RrdrR图5垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:
①AB是直径②ABCD③CEDE④弧BC弧BD⑤弧AC弧AD中任意2个条件推出其他3个结论。推论2:圆的两条平行弦所夹的弧相等。即:在⊙O中,∵AB∥CD∴弧AC弧BD
COABCBADOED《圆》章节知识点复习
六、圆心角定理
圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。此定理也称1推3定理,即上述四个结论中,
只要知道其中的1个相等,则可以推出其它的3个结论,即:①AOBDOE;②ABDE;
③OCOF;④弧BA弧BD
七、圆周角定理
1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。即:∵AOB和ACB是弧AB所对的圆心角和圆周角∴AOB2ACB2、圆周角定理的推论:
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;
即:在⊙O中,∵C、D都是所对的圆周角∴CD
推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。
即:在⊙O中,∵AB是直径或∵C90∴C90∴AB是直径
推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
即:在△ABC中,∵OCOAOB
∴△ABC是直角三角形或C90
注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。
BOACAODCEFBCBOADCBOACBOA《圆》章节知识点复习
八、圆内接四边形
圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。即:在⊙O中,
CD∵四边形ABCD是内接四边形
∴CBAD180BD180DAEC
九、切线的性质与判定定理
(1)切线的判定定理:过半径外端且垂直于半径的直线是切线;两个条件:过半径外端且垂直半径,二者缺一不可即:∵MNOA且MN过半径OA外端∴MN是⊙O的切线
OBAE(2)性质定理:切线垂直于过切点的半径(如上图)推论1:过圆心垂直于切线的直线必过切点。推论2:过切点垂直于切线的直线必过圆心。以上三个定理及推论也称二推一定理:
即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。
十、切线长定理切线长定理:
从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。
BMAN即:∵PA、PB是的两条切线∴PAPB
POPO平分BPA
A《圆》章节知识点复习
十一、圆幂定理
(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。即:在⊙O中,∵弦AB、CD相交于点P,∴PAPBPCPD
(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。
即:在⊙O中,∵直径ABCD,∴CE2AEBE
(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。即:在⊙O中,∵PA是切线,PB是割线∴PAPCPB
(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。
即:在⊙O中,∵PB、PE是割线∴PCPBPDPE
十二、两圆公共弦定理
圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的公共弦。
如图:O1O2垂直平分AB。
即:∵⊙O1、⊙O2相交于A、B两点∴O1O2垂直平分AB十三、圆的公切线
两圆公切线长的计算公式:
(1)公切线长:RtO1O2C中,AB2CO12O1O22CO22;
CO22BOPCADCBOEDAADPCOBEAO1BO2的
ABO1《圆》章节知识点复习
(2)外公切线长:CO2是半径之差;内公切线长:CO2是半径之和。十四、圆内正多边形的计算(1)正三角形
在⊙O中△ABC是正三角形,有关计算在RtBOD中进行:
OD:BD:OB1:3:2;
BOACD
(2)正四边形
同理,四边形的有关计算在RtOAE中进行,OE:AE:OA1:1:2:
(3)正六边形
同理,六边形的有关计算在RtOAB中进行,AB:OB:OA1:3:2.
BOABODCE
十五、扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:lnR180AA;
OSl(2)扇形面积公式:SnR360212lR
Bn:圆心角R:扇形多对应的圆的半径l:扇形弧长S:扇形面积
《圆》章节知识点复习
2、圆柱:
(1)圆柱侧面展开图
S表S侧2S底=2rh2r2
(2)圆柱的体积:Vr2h
(2)圆锥侧面展开图
(1)S表S侧S底=Rrr2(2)圆锥的体积:V13r2h
ADD1母线长底面圆周长BCC1B1ORCArB
友情提示:本文中关于《初三《圆》章节知识点汇总》给出的范例仅供您参考拓展思维使用,初三《圆》章节知识点汇总:该篇文章建议您自主创作。
来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。