荟聚奇文、博采众长、见贤思齐
当前位置:公文素材库 > 计划总结 > 工作总结 > 数学建模总结

数学建模总结

网站:公文素材库 | 时间:2019-05-29 19:10:59 | 移动端:数学建模总结

数学建模总结

商洛职业技术学院201*年数学建模社团工作总结

一、社团简介

数学建模社团自从成立以来,先后取得过省级优秀奖和二等奖,竞赛活动”当选为安徽师范大学校园精神文明创,从今年的全国大学生数学建模竞赛结果来看,数学建模活动已成为学院及全校一项具有鲜明学科特色的学生活动。

为了更好的组织和领导会员进行学习和开展活动,本协会设XXXXXXXXXXXXX。各委员按照本协会的章程,各司其职,使协会在内部建设、成员管理、对外宣传等方面都取得了较好的成绩。

二、社团活动

l数学建模知识讲座(一)

龚老师通过往年的数学建模全国赛题目向大家展示了数学建模的方法与技巧,并讲述了自身指导学生参加全国大学生数学建模竞赛的经历,激发了在场学生参加数学建模竞赛的兴趣,并要求同学静下心学习建模,并提出参赛队员之间要相互配合,才能完成一篇高质量的论文。

通过此次讲座进一步提高学生的实战能力。切实让参赛学生应用数学知识的能力,查找文献资料的能力,论文写作能力以及综合创新能力都能大为提高

2数学建模知识讲座(二)

龚老师在A102多媒体给同学作数学建模竞赛指导,此次讲座的目的是指导学生参加数学建模校内选拔赛,在讲座中丁老师注意融入建模的思想和方法,以此加强对学生数学建模思想和方法的培养。同时,由于数学建模是一个较深的课程,需要一定的基础和学习后一定时间的消化理解,所以在开展的讲培训中还是以基础为主,而把大量的建模培训主要放在暑期强化集训和赛前演练等阶段。

二、数学建模活动培训工作井然有序

概括地讲,我们全体数学建模指导老师和协会干部具体做了以下工作:

1.拟定工作计划以及长远规划

由于协会许多设施,事务处理还不是很完善,但是在工作计划方面,本协会在成立之前就已经拟定了基本工作计划和社团的长远规划。其基本工作计划就是,定期举行数学建模讲座,举行全校的数学建模竞赛,暑期强化集训和赛前演练。每年如果在时间上比较充裕的话,尽可能的在社团内部举行数学建模竞赛,或者开办在数学基础上的娱乐性的活动,让会员乐在其中。在长远规划方面上,主要是联系兄弟院校的数学建模协会,让大家相互交流学习经验。

2.开展基础培训

可以说数学建模协会有今天的规模在很大程度上是学校开设了数学建模数学系的必修课以及非数学系的选修棵,都是由我们协会的指导老师授课。他们在数学基础课程教学中,注意融入建模思想和方法,以此加强对学生数学建模思想和方法的培养。同时,由于数学建模是一个较深的课程,需要一定的基础和学习后一定时间的消化理解,所以在协会开展的讲座以及培训中我们只能以一点基础为主,激发会员学习数学建模的兴趣,而把大量的建模培训主要放在暑期强化集训和赛前演练等阶段。

3.社团的内部管理

数学建模是一个以数学为基础解决实际生活当中的一系列问题的学科。所以在本协会的会员应该是具有一定数学基础、对数学建模感兴趣的同学。在内部管理上我们不得不严格把关,对会员在学习过程当中遇到困难的,协会干部要尽最大努力帮其解决,不得随便了事,万一不行的,可以通过大家讨论或者请教指导老师,寻求最终解决的方案。在会员选拔这一块,我们对不感兴趣的同学通过引导,让他们产生兴趣,如果有一些会员是抱着来玩一玩的。我们不欢迎这样的人来参加,会员可以退出协会。经过多次例会的整顿,最绝大多数选择终留在协会。因此从社团的内部管理上协会营造了一个很好的数学建模学习氛围。

三、对今后工作的思考

优异成绩的获得,凝聚着无数的心血和汗水,尤其是协会指导老师的聪明才智、无私奉献、辛勤劳动和广大会员的努力。数学建模竞赛不同于一般的专项竞赛,题目往往来自于科研、国防、企事业单位尚未解决的大中型实际问题,不但涉及到数学方面的知识,而且还关联到计算机、经济、语言、工程技术等众多领域,是知识、技能、团队创新与拼搏精神等综合能力的较量,是学校整体实力的较量。

尽管我们取得了一些成绩,社团管理运行也已上了一个新加强与兄弟社团的联系

因为数学建模的专业很强,会员绝大多数都是数计学院学生,故影响力不是很大,所以协会在以后开展的活动中,会考虑多加强和兄弟社团的联系,相互交流学习经验,内部管理措施等等。

加强和会员的沟通

定期举行例会,加强与会员的沟通,通过会员反馈的信息,如会员在数学建模方面的不懂,大家集中问题,可以得此一起解决。社团联合会数学建模社团201*年12月8日

扩展阅读:数学建模认识学习总结

数学建模认识学习总结

系别

班级姓名学号教师时间

认识学习总结

数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。一、数学应用题的特点

我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:

第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。

第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。

第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。

第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。

二、数学应用题如何建模

建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:

第一层次:直接建模。

根据题设条件,套用现成的数学公式、定理等数学模型。

第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。

第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。

第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。

三、建立数学模型应具备的能力

从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。

3.1提高分析、理解、阅读能力。

阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。

3.2强化将文字语言叙述转译成数学符号语言的能力。

将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?

将题中给出的文字翻译成符号语言,成本y=a(1-p%)5

3.3增强选择数学模型的能力。

选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型实际问题

一次函数成本、利润、销售收入等

二次函数优化问题、用料最省问题、造价最低、利润最大等幂函数、指数函数、对数函数细胞分裂、生物繁殖等三角函数测量、交流量、力学问题等。

3.4加强数学运算能力。

数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。

数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。

一.要重视各章前问题的教学,使学生明白建立数学模型的实际

意义。

教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。

如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大?

这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。

这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。

二.通过几何、三角形测量问题和列方程解应用题的教学渗透数

学建模的思想与思维过程。

学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程:

现实原型问题数学模型数学抽象简化原则演算推理

现实原型问题的解数学模型的解反映性原则返回解释

列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。

三.结合各章研究性课题的学习,培养学生建立数学模型的能力,

拓展数学建模形式的多样性式与活泼性。

高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是章中向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。

例1根据下表给出的数据资料,确定该国人口增长规律,预测该国201*年的人口数。

时间(年份)191019201930194019501960197019801990人中数(百万)3950637692106123132145

分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。四、培养学生的其他能力,完善数学建模思想。

由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想:

(1)理解实际问题的能力;

(2)洞察能力,即关于抓住系统要点的能力;(3)抽象分析问题的能力;

(4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力;

(5)运用数学知识的能力;

(6)通过实际加以检验的能力。

只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。

数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。

5/12/201*

友情提示:本文中关于《数学建模总结》给出的范例仅供您参考拓展思维使用,数学建模总结:该篇文章建议您自主创作。

来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。


数学建模总结》由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
链接地址:http://www.bsmz.net/gongwen/731676.html