荟聚奇文、博采众长、见贤思齐
当前位置:公文素材库 > 公文素材 > 范文素材 > 压力管道检验员考试

压力管道检验员考试

网站:公文素材库 | 时间:2019-05-29 20:35:07 | 移动端:压力管道检验员考试

压力管道检验员考试

一、指导思想

根据国务院(373号令《特种设备安全监察条例》和质技监局锅发〔1999〕222号文件《锅炉压力容器压力管道及特种设备检验人员资格考核规则》的要求,为提高压力管道检验人员的技术素质和检验工作质量,确保压力管道设备的安全运行,特制定本大纲。二、考核目的及要求

通过压力管道检验员培训班的学习与考核,使学员进一步熟悉和了解有关规程、规范和标准,掌握压力管道在役检验和监督检验的基本技能和常规检验方法以及对管道射线底片正确评定的技能。最终目的是使检验人员达到对工业管道和公用管道可以正确地编制检验方案并实施检验,准确地对存在的缺陷进行定性、定量的判定,采取相应的措施进行正确的处理。通过理论知识和实际操作技能的考核,取得压力管道检验员的资格证书。三、申报条件

申报压力管道检验员检验资格的人员,应符合下列条件之一:

(一)具有化工机械类、管道类专业大专以上学历或化工机械类、管道类专业助理工程师任职资格,并从事压力管道设计、制造、安装、使用、检验、监察工作一年以上;

(二)具有化工机械类、管道类专业中专、理工科(非化工机械类、管道类专业)大专以上学历或化工机械类、管道类专业技术员任职资格,并从事压力管道设计、制造、安装、使用、检验、监察工作二年以上;

(三)具有理工科(非管道类专业)中专以上学历或技术员任职资格,并经管道检验专业培训,从事压力管道设计、制造、安装、使用、检验、监察工作三年以上;

四、教材的选用

暂用“压力管道安全技术”(东南大学出版社201*年4月(一版主编:沈松泉、黄振仁、顾竟成)该书为国家质量技术监督局和锅炉压力容器安全检查局审定的教材。

《锅炉压力容器压力管道特种设备系列教材压力管道检验人员资格考核法规标准习题集》

同时依据以下法规、标准:1、《特种设备安全监察条例》

2、《压力管道安全管理与监察规定》

3、《压力容器压力管道设计单位资格许可与管理规则》

4、《锅炉压力容器压力管道及特种设备检验人员资格考核规则》5、《压力管道元件制造单位安全注册与管理办法》6、《压力管道安装单位资格认可实施细则》7、《压力管道安装安全质量监督检验细则》8、gb50316-201*《工业金属管道设计规范》

9、gb50235-1997《工业金属管道工程施工及验收规范》

10、gb50236-1998《现场设备、工业管道焊接工程施工及验收规范》11、gb50028-1993《城镇燃气设计规范》12、《在用工业管道定期检验规程》(试行)13、jb4730-94压力容器无损检测14、其它相关标准五、考核内容及要求(一)考核要求

压力管道检验人员资格考核,包括基础知识、专业知识考核和实际操作技能考评及评片考核(持rt级以上无损检测资格的人员可免评片考核)。

1、检验员理论知识考核包括基础知识和专业知识(包括综合、定检、监检知识)采用百分制评分,成绩达到70分为合格。考试时间为150分钟。

2、评片主要考核检验人员对射线底片中缺陷检出及运用标准准确评定的技能,考核采用百分制,成绩达到70分为合格。

3、实操考核应根据申请的检验项目进行。考核时间应在基础、专业知识、射线底片评定考核合格后。由于实操考核的重点是考查检验员解决实际问题的能力,因此借鉴检验师考核的做法,申报检验员资格时应同时提交一份自己从事压力管道检验的技术总结为宜。考核采用百分制,达到70分为合格。(二)考核内容

第一部分压力管道概况(一)压力管道的安全形势(二)对压力管道的基本要求

(三)金属材料(含管材标准)及力学性能、热处理知识(四)压力管道的基本结构及常用分类方法(五)熟悉压力管道所涉及到的主要标准(六)压力管道中常见的破坏形式及事故分析第二部分压力管道强度及应力分析

(一)了解压力管道的载荷与应力分类的简单分析

(二)熟悉受内压的压力管道强度计算以及弯管壁厚计算(三)了解压力管道的热应力分析、柔性系数等概念(四)了解压力管道的柔性计算和应力验算第三部分工业管道和公用管道的设计

(一)了解工业管道和公用管道设计的主要内容(二)熟悉管道设计的主要规范

(三)熟悉管道常用管子和管道元件的选用原则(四)了解管道附属设施的选用以及设计审查第四部分压力管道元件的制造与检验

(一)了解压力管道元件(含管件、阀门、法兰、支吊架、密封元件等)的制造与检验要点

第五部分压力管道焊接与常用无损检测方法

(一)了解压力管道焊接的主要特点、基本要求、主要焊接方法和检验要求(二)了解压力管道无损检测对人员的基本要求(三)熟悉压力管道无损检测的几种主要方法

(四)熟悉压力管道常用焊接和无损检测所涉及的标准第六部分压力管道的腐蚀与防护

(一)了解压力管道腐蚀的主要形式和机理(二)了解压力管道防腐和主要防腐技术第七部分压力管道安装检验以及监检

(一)了解压力管道安装资格以及质保体系等审查要点(二)熟悉对压力管道安装检验的主要方法(三)熟悉管道组成件和支承件的检验要点

第八部分工业管道和公用管道安装与施工验收规范(一)了解压力管道安装的施工特点与方法(二)熟悉压力管道的主要工序以及验收要求(三)熟悉压力管道焊接工艺评定审查要点(四)熟悉压力管道焊接常见缺陷以及防止措施第九部分在用压力管道定期检验

(一)了解在用压力管道定期检验的种类和期限

(二)熟悉在用压力管道定期检验的主要方法和特点(三)了解在用压力管道缺陷的安全性评定原则第十部分在用压力管道安全管理与事故分析(一)了解在用管道事故分析的基本方法

(二)熟悉在用压力管道的破坏形式以及事故处理的要求六、课时安排

(一)教学总学时为152学时(二)课时安排章次培训内容学时

第一部分压力管道概况(含基础知识、分类构成及标准)8第二部分压力管道强度以及应力分析8

第三部分工业管道和公用管道的设计(含选材、图面表示及管道布置)16第四部分压力管道元件的制造与检验24

第五部分压力管道焊接与常用无损检测方法24第六部分压力管道的腐蚀与防护8第七部分压力管道安装检验与监检8

第八部分压力管道安装与施工验收规范16第九部分在用压力管道定期检验16

第十部分在用压力管道安全管理与事故分析24总计152

七、理论知识(试卷、命题、标准答案、评分标准及笔试时间)考核要求(一)卷头与试卷格式的要求:

1、理论试卷卷头包括密封线上和下两部分;2、密封线以上部分是姓名、单位、考号;

3、密封线以下部分是试卷标题、专业、年、月、日及考分统计表格;4、试卷卷头格式如下:

姓名工作单位考号

密封线

北京市压力管道检验人员资格考核理论试卷年月日

题号是非题选择题填空题问答题计算题总计满分得分

阅卷人核分人(二)命题

1、试卷中试题的知识涵盖面不得低于考核内容的80%;

2、考核要求中的“理解”、“清楚”、“掌握”、“熟练掌握”知识范围,在试卷中所占的比例应是1∶2∶3∶4;3、题型结构;

3.1题型有“是非题”、“选择题”、“填空题”、“问答题”、“计算题”五种题型。

3.2是非题必须只有“是”或“非”两种可能结果。题目不能有诱导性语言。答案填在题后括号中。用“√”表示正确,用“×”表示错误。3.3选择题的结构分为题干、备选项两部分。题干要简明扼要,为肯定的叙述句。备选项要求有四项,即“四选一”的选答方式或多项选的选答方式。备选项要按一定的逻辑关系排列,并冠以序号“a、b、c、d”,备选的答案只要求把序号填入题干前的括号中。备选项字数要少,错误的备选项要有似真性和典型性。3.4填空题

要简明扼要,答案要唯一性。3.5问答题

综合应用各种标准和专业知识解决实际问题的能力。3.6计算题

基础知识和概念以及实际计算应用。

4、每套试卷中各题之间应避免互为揭示答案,不得出现有争议试题。(一)标准答案及评分标准

试题均须给出标准答案,并有详细的评分标准。(二)理论知识笔试(开卷),时间为150分钟。八、实际操作技能(命题、考核方式)考核要求

主要考核:对标准、规程的熟悉程度、实际的检验能力、使用工具、仪器仪表的熟悉程度。

实际技能考核方式主要有三种:1、方式(一)

(1)制作技能鉴定试题,试题由以下几项组成:1)试题名称2)检验项目3)检验依据

4)检验用工具、仪器

5)检验方案、方法或工艺(2)试题答辩(每人4题)

(3)技能鉴定试题占60%,试题答辩占40%,总分1002、方式(二)论文及论文答辩:

(1)论文内容要求结合实际。字数5000字以上

(2)论文可以是检验方案、检验工艺,也可以是检测鉴定报告等(3)论文占60%,答辩占40%,总分100分3、方式(三)

现场抽题,当场答辩(所出题目应能综合考核学员实际检测能力)九、考试合格标准参加压力管道检验员培训与考核的检验员,只有理论基础、底片评定、实际操作技能三项考核均达到及格分数以上,才能上报上级主管部门,经审查合格后发给压力管道检验员资格证书;若三项中有二项或一项不及格,可给予一次补考机会,若三项均不及格或虽参加补考仍未及格,则应重新参加培训后,方可再进行考试。

扩展阅读:201*年山东省压力管道检验员考试复习题

复习题

名词解释:

行政法规是指国家最高行政机关国务院,依据宪法和法律制定的规范性文件的总称,它包括由国务院制定和发布的以及由国务院各主管部门制定,经国务院批准发布的规范性文件。行政许可:指行政机关根据公民、法人或者其他组织的申请,经依法审查,准予其从事特定活动的行为

行政规章是指国务院有关部、委及国务院授权的直属机构和省、自治区、直辖市人民政府以及省、自治区人民政府所在地的市或经国务院批准的较大城市的人民政府,依照宪法、法律和行政法规制定的具有普遍约束力的规范性文件。

安全监察是负责特种设备安全的政府行政机关为实现安全目的而从事的决策、组织、管理、控制和监督检查等活动的总和。

行政处罚是指行政机关或其他行政主体依法定职权和程序对违反行政法规尚未构成犯罪的相对人给予行政制裁的具体行政行为。

行政规章是指国务院有关部、委及国务院授权的直属机构和省、自治区、直辖市

人民政府以及省、自治区人民政府所在地的市或经国务院批准的较大城市的人民政府,依照宪法、法律和行政法规制定的具有普遍约束力的规范性文件。确立行政许可和监督检查两大安全监察制度特种设备行政许可制度

特种设备的生产必须获得特种设备安全监督管理部门许可(设计、制造、安

装、改造、维修、充装)。

特种设备使用必须通过特种设备安全监督管理部门许可(登记核准、作业人

员考核发证)。

特种设备检验检测必须通过特种设备安全监督管理部门许可(检验检测机构

核准、检验检测人员考核发证)

强制检验制度。特种设备制造过程、安装、改造、重大维修过程必须经核准的检验

检测机构实施监督检验;使用中的特种设备必须经核准的检验检测机构进行定期检验;新研制的特种设备必须经核准的检验检测机构进行型式试验。

执法检查制度。特种设备安全监察人员和行政执法人员有权开展现场检查,责

令消除事故隐患,对违法行为予以查处。并且规定了重点检查场所。

事故处理制度。特种设备发生事故,事故单位应当向特种设备安全监督管理部

门等有关部门报告,事故处理按照国家有关规定进行。

监察责任追究制度。行使特种设备安全监督管理职权的部门、检验检测机构及

其工作人员,应当依法履行职责,严格依法行政,对违反规定滥用职权、徇私舞弊的,依法追究特种设备安全监督管理部门、检验检测机构及其工作人员的法律责任。安全状况公告制度。国家和省级质监部门。条例对档案管理的要求:

第十五条特种设备出厂时,应当附有安全技术规范要求的设计文件、产

品质量合格证明、安装及使用维修说明、监督检验证明等文件。

本条是关于特种设备出厂时,应当附有安全技术规范要求的设计文件、产

品质量合格证明、安装及使用维修说明、监督检验证明等文件的规定。

必须提高对档案管理重要性的认识条例对档案管理的第一次规定

第二十条锅炉、压力容器、电梯、起重机械、客运索道、大型游乐设施的安装、改

1

造、维修竣工后,安装、改造、维修的施工单位应当在验收后30日内将有关技术资料移交使用单位。使用单位应当将其存入该特种设备的安全技术档案。安装、改造、维修及相应的验收档案是特种设备档案的重要内容本条规定了安装、改造、维修单位提供竣工资料的义务。

验收是指建设单位与施工单位同意结束安装、改造、维修活动,并签署有关验收文件的活动。

30日是整理档案的时间

条例对档案管理的第二次规定

第二十六条特种设备使用单位应当建立特种设备安全技术档案。安全技术档案应当包括以下内容:

(一)特种设备的设计文件、制造单位、产品质量合格证明、使用维护说明等文件以及安装技术文件和资料;

(二)特种设备的定期检验和定期自行检查的记录;(三)特种设备的日常使用状况记录;

(四)特种设备及其安全附件、安全保护装置、测量调控装置及有关附属仪器仪表的日常维护保养记录;

(五)特种设备运行故障和事故记录;

(六)高耗能特种设备的能效测试报告、能耗状况记录以及节能改造技术资料。条例对档案管理的第三次规定

(三)压力管道,是指利用一定的压力,用于输送气体或者液体的管状设备,其范围规定为最高工作压力大于或者等于0.1MPa(表压)的气体、液化气体、蒸汽介质或者可燃、易爆、有毒、有腐蚀性、最高工作温度高于或者等于标准沸点的液体介质,且公称直径大于25mm的管道。检验员职责:

1.在资格证书允许的范围内从事相应项目的检验工作;2.编制检验方案,出具检验报告,并对检验结果负责。

金属是具有良好的导电性、导热性、延展性(塑性)和金属光泽的物质合金:是指由两种或两种以上元素组成的具有金属特性的物质。铁碳合金,是以铁和碳为组元的二元合金。

正火:将钢加热至奥氏体化温度并保温使之均匀化后,在空气中冷却的热处理工艺。退火

:将钢加热到高于或等于奥氏体化临界点,保温一段时间后,缓慢冷却,以获得接近平衡组织的热处理工艺。退火目的

⑴调整硬度,便于切削加工。适合加工的硬度为170-250HB。⑵消除内应力,防止加工中变形。

⑶细化晶粒,为最终热处理作组织准备。

2

金属材料的基本性能

所谓强度是指构件在载荷作用下抵抗破坏的能力。所谓刚度是指构件在外力作用下抵抗变形的能力。

弹性变形:材料在外力作用下将产生变形,随外力解除而消失的变形.塑性变形:材料在外力作用下将产生变形,外力解除后不能消失的变形.以低碳钢为例

1.弹性阶段2.屈服阶段

3.强化阶段4.局部变形阶段

温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。

温度是物体内分子间平均动能的一种表现形式。分子运动愈快,物体愈热,即温度

愈高;分子运动愈慢,物体愈冷,即温度愈低。

目前国际上用得较多的温标有华氏温标(°F)、摄氏温标(°C)、热力学温标(K)和国际实用温标。

定义:垂直作用在单位面积上的力,或流体中单位面积上承受的力。物理学上称之为“压强”

当绝对压力小于大气压力时,容器内的绝对压力不足一个大气压的数值来表示。称为”真空度”。它们的关系如下:

绝对压力=大气压力+相对压力真空度=大气压力-绝对压力

三者之间的关系是:绝对压力=大气压+表压力Pg

临界温度:气体液化的必要条件。只有在某一特定温度之下,气体才能通过压缩的方法加以液化,这一温度界限称为临界温度。也就是能使气体液化的最高温度。临界压力:在临界温度时,能使气体液化的最小压力叫做临界压力

3

气、液二相处于相对稳定的平衡共存状态,汽液两相即达到了相平衡。称之为饱和状态。

在饱和状态下的液体叫饱和液体,其密度叫饱和液体密度,饱和液体液面上的蒸气叫饱和蒸气,其密度叫饱和蒸气密度,其压力叫饱和蒸气压(简称蒸气压)。燃烧的定义

可燃物在与空气共存的条件下,当达到某一温度时,与着火源接触即能引起燃烧,并在着火源离开后仍能持续燃烧,这种持续燃烧的现象叫着火。

燃烧,俗称着火,是指可燃物与氧或氧化剂作用发生的释放热量的化学反应,通常伴有火焰和发烟的现象。在时间或空间上失去控制的燃烧所造成的灾害,叫做火灾。任何物质发生燃烧,都有一个由未燃状态转向燃烧状态的过程。这过程的发生必须具备三个条件:即:可燃物、助燃物和着火源,并且三者要相互作用。燃点、闪点、自燃点

(1)燃点按照标准试验方法,引燃爆炸性气体混合物的最低温度叫燃点,也称为着火点、引燃点。(2)闪点标准条件下,能够使液体释放出足够的蒸气而形成能发生闪燃的爆炸性气体混合物的液体最低温度叫闪点。

(3)自燃点可燃物质达到某一温度时,与空气接触,无需引火即可剧烈氧化而自行燃烧的最低温度。

易燃气体,易燃液体的蒸气或可燃粉尘和空气混合达到一定浓度时,遇到火源就会发生爆炸.达到爆炸的空气混合物的浓度,称为爆炸极限.其最低浓度叫爆炸下限,最高浓度叫爆炸上限

包括:机械性能、耐腐蚀性能、物理性能、制造工艺性能、经济性。一、机械性能

4

是指在外力作用下,材料抵抗破裂和过度变形的能力。

包括下列指标:强度、弹性、塑性、韧性、疲劳强度、断裂韧性、硬度(1)强度:是指金属材料在外力作用下对变形或断裂的抗力。

屈服强度Re(s)或Rr0.2(0.2)和抗拉强度Rm(b),高温下工作时,还要考

虑蠕变极限σn和持久强度σD,设计中许用应力都是根据这些数值决定的。GB/T228.1-201*金属材料拉伸试验第1部分:室温试验方法抗拉强度(Rm):相应最大力(Fm)的应力。

最大力(Fm):试样在屈服阶段之后所能抵抗的最大力。对于无明显屈服(连续屈服)

的金属材料,为试验期间的最大力。

强度极限σb指材料在外力的作用下,由开始加载到断裂时为止所能承受的最大

应力。它是反映材料抵抗大量均匀塑性变形的强度指标

屈服强度:当金属材料呈现屈服现象时,在试验期间达到塑性变形发生而力不增加

的应力点,应区分上屈服强度和下屈服强度。

上屈服强度(ReH):试样发生屈服而力首次下降前的最高应力。

下屈服强度(ReL):在屈服期间,不计初始瞬时效应时的最低应力。规定非比例延伸强度(Rp):非比例延伸率等于规定的引伸计

屈服强度σs指材料在外力的作用下,由开始加载到刚出现塑性变形时所承受的应

力。它是反映材料抵抗微量塑性变形的强度指标。对某些材料,在加载试验时,其应力应变图中没有明显的屈服平台,此时就以产生0.2%塑性变形时的应力作为该种材料的屈服极限,并用σ0.2表示。

(2)弹性:指标为弹性极限e,即材料承受最大弹性变形时的应力。

刚度:材料受力时抵抗弹性变形的能力。指标为弹性模量E。

(3)塑性

塑性是指材料受力破坏前承受最大塑性变形的能力,指标为断后伸长率和断面收缩

率。

伸长率:原始标距的伸长与原始标距(Lo)之比的百分率。

断后伸长率(A):断后标距的残余伸长(Lu-Lo)与原始标距(Lo)之比的百分率。

5

断面收缩率(Z):断裂后试样横截面积的最大缩减量(Su-So)与原始横截面积(So)之比的

百分率。

老标准:延伸率δ、断面收缩率ψ(4)韧性

是指金属材料抵抗冲击负荷的能力。韧性常用冲击功Ak和冲击韧性值ak表示。GB/T229-201*金属夏比缺口冲击试验方法

适于温度在-192℃~1000℃范围内金属夏比V型缺口和U型缺口试样的冲击试验韧脆转变温度

材料的冲击韧性随温度下降而下降。在某一温度范围内冲击韧性值急剧下降的现象

称韧脆转变。发生韧脆转变的温度范围称韧脆转变温度。材料的使用温度应高于韧脆转变温度。

(5)疲劳强度:表示材料经无数次交变载荷作用而不致引起断裂的最大应力值(6)断裂韧性:材料抵抗内部裂纹失稳扩展的能力称为断裂韧性。(7)硬度:指材料抵抗局部塑性变形的能力,现在多用压入法测定。

监督检验是指在特种设备制造或安装过程中,在企业自检合格的基础上,由

国家特种设备安全监督管理部门核准的检验机构对制造或安装单位进行的制造或安装过程进行的验证性检验,属于强制性的法定检验。特种设备定期检验

在特种设备投放使用后,按照特种设备安全技术规范规定的时间间隔、设备所

处状态(停机或者在线)、检验人员、检验设备、检验项目、检验方法、检验程序、抽样比例等对特种设备进行的检查、测量、检测、试验并最终评定其安全性能是否符合要求的过程。

压力管道公称直径(DN)

管道元件DN(公称尺寸)的定义和选用GB/T1047-201*

是由字母DN和后跟无因次整数数字组合的尺寸标志。

管道的公称直径即不是管子的内径,也不是管子的外径,它是为了设计,制造和安

装的方便而人为规定的标准.用符号DN表示。

管道的公称直径(又称为公称通径)是管子和管道附件的标准直径,它是就内径而言的

标准,只近似于内径而不是实际内径。

用标准的尺寸系列表示管子、管件、阀门等口径的名义内直径。公称直径

规定管子与管路附件的公称直径或公称通径的目的,是使管道元件连接处的口径保

持一致,即通用性和互换性。是为了设计、制造、安装和修理的方便而规定的一种标准直径。

公称直径一般与管道元件连接处的内径有相似性。例如:阀门的公称直径等于实际

内径。但是,大多数的管道元件的公称直径既不是内径、也不是外径或者中径。它只是一种称呼直径。所以,公称直径又被定义为名义内径或者名义外径。至于管道元件实际内径或者外径,应是由管道元件的相应产品的技术标准来规定。然而,无论管道元件的内径或者外径多大,相同公称直径的管道元件进行连接时,都可以达到互换与通用的目的。(GB1047-95管道元件的公称通径)

6

目前常用的管子标准中,对于管子的直径均以管子外径来描述。管子的外径加上相

应的壁厚,共同构成管子的规格。管子和管路附件的公称直径常用的有15、20、25、32、40、50、65、80、100、125、150等约20多种。管子的公称直径

一般来说,管子的直径可分为外径、内径、公称直径。管材为无缝钢管的管子

的外径用字母D来表示,其后附加外直径的尺寸和壁厚,例如外径为108的无缝钢管,壁厚为5MM,用D108*5表示,塑料管也用外径表示,如De63,其他如钢筋混凝土管、铸铁管、镀锌钢管等采用DN表示,在设计图纸中一般采用公称直径来表示,是管子(或者管件)的规格名称。管子的公称直径和其内径、外径都不相等,公称直径是接近于内径,但是又不等于内径的一种管子直径的规格名称,在设计图

纸中所以要用公称直径,目的是为了根据公称直径可以确定管子、管件、阀门、法兰、垫片等结构尺寸与连接尺寸,公称直径采用符号DN表示,如果在设计图纸中采用外径表示,也应该作出管道规格对照表,表明某种管道的公称直径,壁厚。公称压力(PN)

是由字母PN和后跟无因次整数数字组合的压力标志

是供参考用的方便的圆整数。同一公称压力PN值所标示的同一公称通径的所有管

路附件具有与端部连接型式相适应的同一连接尺寸。

即公称压力是压力容器或管道的标准化压力等级,即按标准化要求将工作压力划分

为若干个压力等级.指规定温度下的最大工作压力,也是一种经过标准化后的压力数值.

压力管道管系性能要求

一、对管系性能的基本要求

对压力管道最基本的要求是在确保安全的前提下有效运行,保证生产的长期稳定。这就需要压力管道必须具备生产工艺要求的特定使用性能:结构先进、安全可靠、制造安装容易、维修方便、经济合理等。通常压力管道至少应保证以下性能:1、管道的强度

管道强度是指管道和管道元件在限定的压力、温度条件下抵抗破裂或过量塑性变形的能力。如管道设计时强度不足,在压力作用下会产生塑性变形,最后导致管道破裂失效。2、管系的柔性

通常对管系通过自身的变形而吸收热胀冷缩和其它位移的特性叫做管系的柔性,管系的柔性是反映管系变形难易程度的一个物理概念。影响管系柔性的因素通常包括以下几点:①管系中管道元件的规格(管径和壁厚);②管系的空间几何形状和管道元件的数量;③管系端部相关设施的刚度;

④管系中间支撑件的数量、支撑形式和约束效果;

⑤管系中特殊管道元件(柔性元件)的影响,柔性元件通常包括波纹管膨胀节、U型膨胀节等。

3、管系的稳定性管系的稳定性(刚度)是指管线中管道或管道部件在限定的载荷条件下抵抗弹性变形的能力。与强度不同,管道或管道的受压部件不会发生破裂和过量的塑性变形,但却会由于弹性变形过大丧失正常的工作能力。其影响因素主要是管系内管道的支撑、管道元件的布置和管道元件的规格。

7

4、管系的密封性

管系的密封不但指压力管道可拆连接处密封性,而且也包括各种母材和焊缝的致密程度。对易燃、毒性程度为高度危害和极度危害介质的管系,其密封性能要求更加严格。对盛装这类介质的管系不但要求采用可靠的密封结构,要求进行整体气密性试验,而且对制造和检验会有更多、更高的要求。

压力管道的失效型式

一、压力管道破坏的主要原因

压力管道在实际使用过程中,由于在设计、制造、安装及运行管理中存在各类问题,管道的破坏性事故时有发生。同时由于工作介质往往有易燃易爆、腐蚀及剧毒的特点,因此给压力管道的安全运行带来一定的威胁。1、长输管道

在欧州国家长输管线破坏事故的原因中,外力损伤占第一位,其次是腐蚀、制造缺陷、材料损伤等。美国长输管线破坏事故的原因中,外力损伤占第一位,其次是腐蚀、材料损伤等。原苏联天然气管道的事故原因主要是腐蚀、其次是制造缺陷、材料损伤和外力损伤。我国管线事故原因主要是腐蚀、外力损伤、制造缺陷和材料损伤等原因,与原苏联的事故统计数据较为接近,和欧美国家情况相差较大,其主要原因在于当时在管材、制管工艺、制造和安装水平比较落后。近几年,我国新建的西部油、气管线由于所采用的设备、材料已接近国际水平,加之防腐、自动化操作水平的提高,设备故障、腐蚀、误操作等原因造成的事故比例将会降低。2、公用管道

城市煤气和天然气管线破坏事故的原因主要是腐蚀、外力损伤、制造缺陷和材料损伤等。

3、工业管道

国外有关统计资料表明,工业管道的破坏性事故中,腐蚀破坏约占28.1%;疲劳破坏约占29.1%;蠕变破坏约占28.8%。可见腐蚀、疲劳、蠕变破坏是管道破坏的三大主要原因。将95年石化企业Ⅰ、Ⅱ、Ⅲ类管道爆炸与严重损坏事故原因按图1所示进行了分类,

二、压力管道的主要失效形式和分类1、压力管道的主要失效形式

压力管道的主要失效形式包括:

①因存在原始制造性缺陷和使用过程中新生缺陷引发的弹塑性断裂失效模式;②因环境或介质影响造成的由腐蚀引发的破坏失效模式;

③因高温、高压、临氢、交变载荷环境造成的材料累积损伤失效模式,如珠光体球化、石墨化、回火脆化、蠕变破坏、疲劳破坏、氢损伤(包括氢腐蚀和氢脆)等。2、压力管道失效型式的分类

①压力管道失效型式的分类方法有很多种。按破坏时宏观变形量的大小可分为韧性破坏(延性破坏)和脆性破坏两大类。a.韧性破坏

韧性破坏是管道在压力的作用下管壁上产生的应力达到材料的强度极限,因而发生断裂的一种破坏型式。金属材料在外力的作用下,首先产生弹性变形,当外力引起的应力超过材料的弹性极限(屈服点)时,除继续产生弹性变形外,同时还产生塑性变形。当外力引起的应力达到材料的强度极限时,材料便发生断裂,这就是材料变形过程的弹性变形、弹塑性

8

变形和断裂的三个阶段。韧性破坏是一种因强度不足而发生的破坏。如果管道不是由于存在明显的缺陷,或者材料也没有明显脆化,而是由于超压导致破坏时,都属于韧性破坏。通常具有如下一些特征:1)发生明显变形;2)一般不产生碎片;

3)实际爆破压力与理论值相近。b.脆性破坏

脆性破坏是指管道破坏时没有发生宏观变形,破坏时的管壁应力也远未达到材料的强度极限,有的甚至还低于屈服极限。脆性破坏往往在一瞬间发生,并以极快的速度扩展。这种破坏现象和脆性材料的破坏很相似,故称为脆性破坏。又因为它是在较低的应力状态下发生的,故也叫做低应力破坏。脆性破坏的基本原因是材料的脆性和存在严重缺陷。前者可因焊接和热处理工艺不当而引起,后者主要包括制造安装时焊接接头中遗留的缺陷和使用中产生的缺陷。此外,加载的速度、残余应力、结构的应力集中等都会加速脆断破坏的发生。②此外按破坏时材料的微观(显微)断裂机制分类,也可以分为韧窝断裂、解理断裂、沿晶脆性断裂和疲劳断裂等。但实际工作中,往往采用一种习惯的混合分类方法,即以宏观分类法为主,再结合一些断裂特征。通常分为:制造时产生的原始缺陷破坏、腐蚀冲刷破坏、疲劳破坏、材料损伤和其他形式破坏。

压力管道制造时产生的原始缺陷破坏a.压力管道焊接接头中常见的焊接缺陷

b.钢管中常见的制造缺陷:纵向裂纹、横向裂纹、表面划伤、折叠、夹杂和分层等。

c.锻件中常见的锻造缺陷:白点、锻造裂纹、龟裂、夹沙、非金属夹杂物以及缩孔和缩管。d.钢板中常见的制造缺陷:分层、裂纹、线状缺陷、非金属夹杂物、夹渣、折叠和偏析等。e.铸件中常见的制造缺陷:气孔、夹渣、夹沙、密集气孔、冷隔、缩孔和缩松、裂纹(热裂纹、冷裂纹等)。腐蚀破坏

压力管道的腐蚀是由于受到内部输送物料及外部环境介质的化学或电化学作用(也包括机械等因素的共同作用)而发生的破坏。特别是石油化学工业,因其介质腐蚀性强,并常常伴有高温、高压、磨损等,最易发生管道破坏事故。压力管道的腐蚀破坏形态,主要有全面腐蚀、局部腐蚀、应力腐蚀破裂、腐蚀疲劳及氢损伤。其中危害最大的当属应力腐蚀破裂,往往在没有先兆的情况下突然发生,造成预测不到的破坏。a.全面腐蚀b.局部腐蚀

c.应力腐蚀开裂疲劳破坏

压力管道的疲劳破坏是管道长期受到反复加压和卸压的交变载荷作用,而导致金属材料出现的一种破坏形式。金属在承受大小和方向都随时间发生周期性变化的交变载何的作用时,尽管载荷所产生的应力不大,而且往往低于材料的屈服极限,但如果长期受这类载荷的作用,也会发生断裂破坏。疲劳破坏时一般没有明显的塑性变形,从型式上来讲与脆性破坏很相似,但其产生原因和发展过程却截然不同。

金属承受的交变应力愈大,则所能承受的交变次数愈少;反之,交变应力愈小,则至断裂时所能承受的交变次数就愈多。当金属所承受的交变应力不超过某一数值时,它可承受无数次的交变应力而不会发生疲劳断裂,该应力值称为材料的疲劳极限。疲劳极限与抗拉强度有一定的比例关系。在拉伸一压缩对称的应力循环中,疲劳极限约为抗拉强度的40%,若仅承受拉伸的脉动循环,则此比例还要高一些。

9

腐蚀疲劳

交变应力与化学介质共同作用下引起金属力学性能下降、开裂,甚至断裂的现象称为腐蚀疲劳。腐蚀疲劳裂纹往往有许多条,但无分支。一般是穿晶裂纹。在用压力管道的材料损伤

室温下材料的组织和性能一般均较稳定,不随使用时间增加而改变。但在高温下材料的表现与室温下材料的表现不同,材料会发生损伤。压力管道材料损伤是指管道材料在高温下长期运行所引起的组织和性能发生变化的现象。通常管道材料发生的组织和性能变化形式有:珠光体的球化和碳化物聚集;石墨化;回火脆化;蠕变和蠕变脆化;氢损伤(包括氢腐蚀和氢脆)等。

a.珠光体球化和碳化物聚集b.石墨化c.蠕变破坏d.回火脆化e.氢损伤

1、介质的物理特性--温度

温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。

温度是物体内分子间平均动能的一种表现形式。分子运动愈快,物体愈热,即温度

愈高;分子运动愈慢,物体愈冷,即温度愈低。

目前国际上用得较多的温标有华氏温标(°F)、摄氏温标(°C)、热力学温标(K)和国际实用温标。

摄氏温标以水沸点(标准大气压)为100度和冰点(标准大气压下冰和水混合物)为

零度作为温标的两个固定点。

绝对零度,即绝对温标的开始,是温度的最低极限,相当于273.15℃,当达到这

一温度时所有的原子和分子热运动都将停止。绝对零度是一个只能逼近而不能达到的最低温度。开尔文单位

以绝对零度作为计算起点的温度。即将水三相点的温度准确定义为273.16K后

所得到的温度,过去也曾称为绝对温度。开尔文温度常用符号K表示;其单位为开尔文,定义为水三相点温度的273.16K,开尔文温度和人们习惯使用的摄氏温度相差一个常数273.15,即=+273.15(℃是摄氏温度的符号)。1℃=274.15k0℃=273.15K

临界温度:气体液化的必要条件。只有在某一特定温度之下,气体才能通过压缩的

方法加以液化,这一温度界限称为临界温度。也就是能使气体液化的最高温度。临界压力:在临界温度时,能使气体液化的最小压力叫做临界压力

露点是指饱和蒸气经冷却或加压后,遇到接触面或凝结核便液化成露。这时在该压

力下的温度称为露点。烃类混合气体的露点与其组成、压力有关。当压力升高时,

10

露点将随之升高。

液体的饱和蒸气压力与外界压力相等时的温度称为液体在该压力下的沸点。沸点与外界压力有关。压力增高,沸点上升。燃烧的定义

可燃物在与空气共存的条件下,当达到某一温度时,与着火源接触即能引起燃烧,并在着火源离开后仍能持续燃烧,这种持续燃烧的现象叫着火。

燃烧,俗称着火,是指可燃物与氧或氧化剂作用发生的释放热量的化学反应,通常伴有火焰和发烟的现象。在时间或空间上失去控制的燃烧所造成的灾害,叫做火灾。任何物质发生燃烧,都有一个由未燃状态转向燃烧状态的过程。这过程的发生必须具备三个条件:即:可燃物、助燃物和着火源,并且三者要相互作用。一、可燃物

凡是能与空气中的氧或其他氧化剂起化学反应的物质称可燃物。按其物理状态还可分为气体可燃物(如氢气、一氧化碳等)、液体可燃物(如汽油、酒精等)和固体可燃物(如木材、布匹、塑料等)三类。二、助燃物

凡是能帮助和支持可燃物燃烧的物质,即能与可燃物发生氧化反应的物质称为助燃物(如空气、氧气、氯气以及高锰酸钾、氯酸钾等氧化物和过氧化物等)。三、着火源

凡能引起可燃物与助燃物发生反应的能量来源(常见的是热能源)称作着火源。根据其能量来源不同,着火源可分为:明火、高热物体、化学热能、电热能、机械热能、生物能、光能和核能等。此外,可燃物质燃烧所需的着火能量是不同的,一般可燃气体比可燃固体和可燃液体所需的着火能量要低。着火源的温度越高,越容易引起可燃物燃烧。

综上所述,只有在可燃物、助燃物和着火源三个条件同时具备,而且数量达到一定比例的前提下,互相结合,互相作用,燃烧才能发生。燃点、闪点、自燃点

(1)燃点按照标准试验方法,引燃爆炸性气体混合物的最低温度叫燃点,也称为着火点、引燃点。(2)闪点标准条件下,能够使液体释放出足够的蒸气而形成能发生闪燃的爆炸性气体混合物的液体最低温度叫闪点。

(3)自燃点可燃物质达到某一温度时,与空气接触,无需引火即可剧烈氧化而自行燃烧的最低温度。爆炸极限

概念:易燃气体,易燃液体的蒸气或可燃粉尘和空气混合达到一定浓度时,遇到火源就会发生爆炸.达到爆炸的空气混合物的浓度,称为爆炸极限.其最低浓度叫爆炸下限,最高浓度叫爆炸上限。易爆(燃)介质:

是指介质(流体)与空气混合的爆炸下限小于10%,或爆炸上限和下限之差值大于等于20%的气体。

(HG/T20695)易爆介质

指气体或者液体的蒸汽、薄雾与空气混合形成的爆炸混合物,并且其爆炸下限小于10%,或者爆炸上限和爆炸下限的差值大于或者等于20%的介质。毒物的定义

凡作用于人体产生有毒作用的物质,统称为毒物。

毒物侵入人体后与人体组织发生化学或物理化学作用,并在一定条件下,破坏人体的正常生理功能或引起某些器官或系统发生暂时性或永久性病变的现象,叫做中毒。

剧毒流体:如有极少量这类物质泄露到环境中,被人吸入或与人体接触,即使迅速治疗,

也能对人体造成严重的和难以治疗的伤害的物质.相当于GB5044中I级(极度危害)的毒物.

有毒流体:这类物质泄露到环境中,被人吸入或与人体接触,如治疗及时不致对人体造

成不易恢复的危害.相当于GB5044中II级及以下(高度,中度,轻度危害)的毒物.可燃流体:在生产操作条件下可以点燃和连续燃烧的气体或可以气化的液体。腐蚀的定义

由于材料与环境反应而引起的材料的破坏或变质。所谓强度是指构件在载荷作用下抵抗破坏的能力。所谓刚度是指构件在外力作用下抵抗变形的能力。所谓稳定性是指构件保持其原有平衡形态的能力。

主平面:剪切应力等于零的面称为该点的主平面。主应力:主平面上的正应力称为该点的主应力。

单向应力状态:对简单拉伸或压缩来说,三个主应力中只有一个不等于零,称为单

向应力状态。

二向和三向应力称为复杂应力状态。冷作硬化

材料在常温下,预拉到强化解段,使其发生塑性变形,然后卸载,当再次加载时,

比例极限提纲但塑性降低的现象,称为冷作硬化.

第一强度理论:认为最大拉应力是引起材料断裂破坏的主要因素。第二强度理论:认为最大伸长线应变是引起材料断裂破坏的主要因素第三强度理论:认为最大剪切应力是引起流动破坏的主要因素。第四强度理论:认为形状改变比能是引起材料流动破坏的主要原因。

金属是具有良好的导电性、导热性、延展性(塑性)和金属光泽的物质。金属是具有正的电阻温度系数的物质晶体与非晶体

晶体是指原子呈规则排列的固体。常态下金属主要以晶体形式存在。晶体具有各向

异性。

非晶体是指原子呈无序排列的固体。在一定条件下晶体和非晶体可互相转化。

热处理:是指将钢在固态下加热、保温和冷却,以改变钢的组织结构,获得所需要性能的

12

一种工艺.

退火

将钢加热到高于或等于奥氏体化临界点,保温一段时间后,缓慢冷却,以获得接近

平衡组织的热处理工艺。退火目的

⑴调整硬度,便于切削加工。适合加工的硬度为170-250HB。⑵消除内应力,防止加工中变形。

⑶细化晶粒,为最终热处理作组织准备。正火

将钢加热至奥氏体化温度并保温使之均匀化后,在空气中冷却的热处理工艺。一般在钢厂进行,目的在于改善热轧状态的力学性能,主要是提高塑性和韧性。对于低温用钢,通过正火可细化晶粒,达到低温韧性要求。过热;过烧淬火:

钢加热到临界点以上,保温后迅速冷却,以得到马氏体或贝氏体组织的热处理工艺。的目的是为获得低碳马氏体(板条马氏体)或贝氏体组织。回火

将淬火或正火后的钢加热到相变点以下某一选定温度,并保温一段时间,然后以适

当的速度冷却,以消除淬火或正火所产生的残余应力,增加钢的塑性和韧性的热处理工艺。

压力管道用钢回火一般采用高温回火处理,回火后的组织一般为回火马氏体或回火

马氏体+回火贝氏体。对于正火后获得铁素体+珠光体组织的钢种一般没有必要进行高温回火。

回火脆性:指淬火钢在某些温度区间回火或从回火温度缓慢冷却通过该温度区间的

脆化现象。回火脆化:钢制压力管道在380~570℃范围内长期运行,使钢材脆化的现象。

调质

钢材淬火后再进行高温回火的热处理工艺。

压力容器用低碳钢和低合金钢采用调质处理,可以提高钢材的强度和韧性,以更好

发挥材料的潜力。

稳定化处理

含稳定化元素的奥氏体不锈钢在850~900℃加热,并保温一段时间,然后空冷,使

碳充分与稳定化元素(如钛)形成碳化物,并使奥氏体晶内元素扩散均匀,从而提高抗晶间腐蚀性能的处理方法。固溶化处理:

将奥氏体不锈钢加热至1100℃左右的高温并保温,使所有碳化物充分

溶入奥氏体中,然后以较快的速度冷却(一般采用水冷或风冷),以获得碳化物完全固溶于奥氏体基体内均匀的单相组织,从而提高抗晶间腐蚀性和延展性的工艺方法。敏化温度区

不锈钢产生晶间腐蚀与钢的加热温度和加热时间有关。1Cr18Ni9Ti不锈钢的晶间腐蚀

13

与加热温度和加热时间的关系,当加热温度小于450℃或大于850℃时,不会产生晶间腐蚀。

因为温度小于450℃时,由于温度较低,

不会形成碳化铬化合物;而当温度超过850℃时,晶粒内的铬扩散能力增强,有足够的铬扩散至晶界和碳结合,不会在晶界形成贫铬区。450~850℃称“敏化温度区”,其中尤以650℃为最危险。

一、机械性能

是指在外力作用下,材料抵抗破裂和过度变形的能力。

包括下列指标:强度、弹性、塑性、韧性、疲劳强度、断裂韧性、硬度(1)强度:是指金属材料在外力作用下对变形或断裂的抗力。

屈服强度Re(s)或Rr0.2(0.2)和抗拉强度Rm(b),高温下工作时,还要考

虑蠕变极限σn和持久强度σD,设计中许用应力都是根据这些数值决定的。GB/T228.1-201*金属材料拉伸试验第1部分:室温试验方法韧脆转变温度

材料的冲击韧性随温度下降而下降。在某一温度范围内冲击韧性值急剧下降的现象

称韧脆转变。发生韧脆转变的温度范围称韧脆转变温度。材料的使用温度应高于韧脆转变温度。

冷脆:金属材料在低温下呈现韧性降低,脆性增大的现象。

高温下运行的压力容器,工作温度下韧性良好,但室温下进行压力试验时可能引起

脆性破坏。

一般,镇静钢低温韧性优于沸腾钢,因此沸腾钢不能用于低温结构。

面心立方金属的冲击韧性基本上与温度无关,优于体心立方金属,所以铜、铝和奥

氏体不锈钢在低温设备中有广泛应用。

影响低温韧性的因素:

晶体结构:面心立方优于体心立方。

化学成分:碳含量。低温刚多限制在0.2%以下。晶粒度:细晶粒

热处理和组织:淬火时效和应变时效都使脆性转变温度升高加工硬化:降低韧性,使脆性转变温度升高应力状态:残余应力、缺陷

材料的b与HB之间的经验关系:对于低碳钢:b(MPa)≈3.6HB对于高碳钢:b(MPa)≈3.4HB

对于铸铁:b(MPa)≈1HB或b(MPa)≈0.6(HB-40)

14

15

一、判断题√×

1.公称直径50mm、最高工作压力1.0MPa的工业氮气管道不属于安全监察范围。(×)

2.受监察的压力管道的支吊架属于安全监察范围。(√)3.公称直径25mm,输送设计压力1.6MPa(最高工作压力1.5MPa)、设计温度250℃工业蒸汽管道的级别为GC2。(×)

4.公称直径100mm,最高工作压力0.05MPa的公用燃气管道为GB1级。(×)

5.公称直径80mm,输送设计压力4.0MPa(最高工作压力3.8MPa)、设计温度400℃有毒流体介质工业管道的类别、级别、品种为GC1(3)。(√)

6.公称直径200mm,输送最高工作压力0.6MPa、最高工作温度90℃热水的公用热力管道为GB2级。(×)

7.在受监察的工业管道中,介质毒性程度为极度危害时,管道的类别、级别、品种均为GC1(1)。(√)

8.装有安全阀的管道,设计压力应大于等于安全阀的整定压力。(√)9.密度比环境空气大的可燃气体可排入大气。(×)

10.有应力腐蚀倾向的焊接接头应进行焊后热处理。(√)11.离心泵出口管道的设计压力应不小于泵的关闭压力。(√)12.GB/T20801-201*《压力管道规范工业管道》的适用范围与《特种设备安全监察条例》规定的“压力管道”安全监察范围是一致的。(×)

13.铸铁和结构钢用于受压管道组成件时,均不得用于GC1级管道。(√)14.碳钢、碳锰钢、超低碳奥氏体不锈钢不宜在425℃以上长期使用。(√)15.石棉橡胶板垫片不得用于真空管道。(√)

16

二、填空题

1.《压力容器压力管道设计许可规则》中将受监察的压力管道划分为四类,其中长输管道为类、公用管道为类、工业管道为类、动力管道为类。

2.《压力容器压力管道设计许可规则》中规定,《设计许可证》有效期为年,审批人员的资格有效期为年。

3.GB类、GA2、GC2、GC3、GD2级压力管道设计单位,专职设计人员必须有相应的设计业绩,总人数不少于7人,其中审批人员不少于2人。

4.GB/T20801.2中规定,灰铸铁和可锻铸铁管道组成件用于可燃介质时,其设计温度应不大于150℃,设计压力应不大于1.0MPa。

5.夹套管的内管管件应使用无缝管件或无缝对焊管件,但不得使用斜接弯头。

6.进行内压直管厚度计算时,取其纵向焊接接头系数,对无缝钢管取1。

7.焊接接头的无损检测分

为、、、。

8.GB/T20801.5中规定,管道名义厚度≤30mm的对接环缝,应采用RT检测。

9.安全阀设定压力又称为压力或压力。

10.GB/T20801.5中规定,对于输送流体以及流体的管道,应进行泄露试验。

三、选择题[将正确答案的序号填入()内]

1.工业管道泄漏试验压力应为设计压力的(A)倍。A.1.0;B.1.15;C.1.5。

2.对于没有安全控制装置的真空管道,设计压力取(A)。

A.-0.1MPa;B.0.1MPa;C.最大压力差的1.25倍或0.1MPa中的较小值并按外压条件进行设计。

3.确定工业管道液压试验压力时,计算公式中的P为(C)。A.最大允许工作压力;B.安全泄放装置的设定压力;C.设计压

17

力。

4.设计压力为1.0MPa的GC2级奥氏体不锈钢工业管道,其检查等级应不低于(B)。

A.Ⅳ级;B.Ⅲ级;C.Ⅱ级。5.GC类(工业管道)划分为(C)。

A.不分级;B.GC1、GC2级;C.GC1、GC2、GC3级。四、问答题

1.《特种设备安全监察条例》中对压力管道的安全监察范围是如何规定的?2.试述长输管道、公用管道、工业管道、动力管道的定义。3.“低温低应力工况”是指同时满足哪些条件的工况?

4.有一标准为GB/T8163-1999、钢号为20、规格为φ325×8的无缝管,其使用温度下限为多少?210℃下的许用应力是多少?

5.写出GB/T20801.3-201*中内压直管计算厚度的计算公式。

6.试述工业管道中管道组成件最小厚度、名义厚度、有效厚度、设计厚度的定义。

7.管道设计应考虑的动力载荷有哪些?

8.试述GB/T20801.6-201*中“最大泄放压力”的定义,当压力系统装有一个安全泄放装置时,最大泄放压力如何确定?

18

友情提示:本文中关于《压力管道检验员考试》给出的范例仅供您参考拓展思维使用,压力管道检验员考试:该篇文章建议您自主创作。

来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。


压力管道检验员考试》由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
链接地址:http://www.bsmz.net/gongwen/738391.html
相关文章