荟聚奇文、博采众长、见贤思齐
当前位置:公文素材库 > 计划总结 > 工作总结 > 通信原理理论总结

通信原理理论总结

网站:公文素材库 | 时间:2019-05-29 22:28:47 | 移动端:通信原理理论总结

通信原理理论总结

通信原理学习心得

学了通信原理这门课,一开始觉得很难,而且听学长们也总是告诫我们,通信原理是很难的课程,平时一定要好好学,不然自己复习的日子根本就抓不到要点了。事实上好像也是如此,在周围,这门主课的挂课率总是算前排的。当然对于我这样的人,总是上课时算是比较认真的,但是半期的时候还是没有搞懂它是干什么的,甚至到期末了,也只有零星的一点编码呀,带宽呀,调制啦,这样一些概念,但这些技术在一个通信系统中又是出于什么样的位置,该怎样应用这些技术组成一个通信系统,对此我还是一概不知。然而经过期末前的复习,我感觉自己对通信系统总算有个印象了,所以想把那些零碎的名词做一些解释,并且用我自己的学习过程以及对通信系统的了解来说明这些技术的应用。

上面是我画的认为比较完整的通信系统的简单流程图,对此我做一翻解释。

首先日常生活中的信号总是模拟的,我们把这些信号通过滤波等处理,得到带限的信号,这里以基带信号singnal为例子,signal经过采样保持电路,我们就得到PAM

信号,如图,这样的信号就是离散信号了。

离散信号经过量化归属到个档次的幅度中比如我们有2V,4V,6,V,8V四个档次的归类,并且规定1V~3V之间的PAM离散信号就归类到2V的档次中去,一次类推,通过比较给每个PAM信号进行归类,这就是量化。

之后将量化了的信号进行编码,编码是一种认为规定的过程比如我们规定2V用00表示,4V用01表示,6V用10表示,而8V用11来表示,这样就把阶梯信号和二进制信号有了一种对应关系,顺着这种对应关系,我们可以得到刚才量化了的信号的二进制代码,这就是PCM编码得到了可以在存储器中存储的数字信号。

以上从模拟到数字信号的一种转变就是我们常说的A/D转换。至于我们平时要求的转换比特率的求法可以从它的转换过程得出计算方法。一个PAM信号对应一个档次,而一个档次对应几个比特的数字是在编码中体现的,例子中就是一个档次对应两个比特,假设这种对应关系是1对N个比特,对模拟信号的采样率是F,也就是1秒钟有F个PAM信号,这F个PAM信号就要被转换成F*N个比特,所以比特率就是F*N了。

对于完成转换的数字信号,我们如何处理呢?有的是被放进存储器中存储了,有的是到CPU中进行计算,加密等处理了。通常为了达到通信目的,我们就要将数字信号传递并且转换成模拟信号,毕竟在生活中模拟信号才是我们可以识别的。

所以我们从存储器中读取数字信号,这些信号是基带信号,不容易传输,经过数字调制系统就可以转换成高频信号而被发送设备以各种形式比如微波,光信号传播出去。发送这些高频信号的速度关系到发送的比特率注意与前面的转换的比特率有不同。假如整个发送端可以发送四中波形A,B,C,D,它们可以分别表示发送了00,01,10,11信号,那么我们就说发送一个符号(即波形)就是发送了两个比特了。由此得到符号率与比特率的关系B=N*D.D是符号率baud/s,B是比特率bit/s,N表示一个符号与N个比特对应。

接收设备将这些信号转换成电信号,通过解调器,就可以还原基带信号,同样可以将它们放进存储器存储,这可以理解成网络视频在我们的电脑上的缓存。缓存中的信号通过解码器,也就是与编码器功能相反的器件将数字序列转换成各种量化的台阶(档次)信号。

最后将台阶信号进行填充恢复,我们就又可以原来的输入的模拟波形了,由此我们完成一次通信。如果模拟信号不需要数字化,那么我们可以进行模拟调制,同样可以发送出去,这个过程要简单很多。当然,这里所讲的只是我们学习中所涉及的一些概念,完整的通信系统还有更多要考虑的,这只是我觉得通信过程的关键的骨架问题。还有几个概念是对它们的理解和总结,希望可以和大家分享。1.

二进制比特率与信息量中的比特率。

因为我们假定二进制信号是等概率发生的,也就是P=0.5,而信息量的定义是这样的I=-log2(p)bit,通过此式,我们可以计算发送的一个二进制符号的信息量I=-log2(0.5)bit=1bit,所以我们通常说一个0或者1就是一个比特了。

2.

方波的带宽问题。

由上图我们可以注意到,一个持续时间为T的方波,它的频谱是一个SINC函数,零点带宽是1/T,即时间的倒数。当然,方波的带宽是无限大的,因此这样的波形在现实中是很难实现的,我们只能给方波提供一定的带宽,就是说得到的肯定只能是经过了过滤的波形。

在这里我们可以联系到吉布斯现象。我们可以这样理解:频率越大,就说明变化越快,而方波的转折点处就是一个极快的变化也就是有频带的高频部分构成,而经过带限的滤波之后,高频被滤去,得到的波形在转折点处就变化慢下来,于是在需要变化快的地方(如方波的转折点)变化慢,由此产生吉布斯现象。

3.

升余弦滚降滤波器。

我们知道升余弦滚降滤波器是防止码间串扰而设计的。码间串扰是指各个时间点上发送的符号并非准确的方波,而是在规定的时间内仍有余波,于是对下一个时刻发送的符号产生影响,最后可能因为影响的叠加效果而使后果严重,得到相反的采样结果。注意我们这里讲的码间串扰都是发生在基带频率上的。因此升余弦滚降滤波器也是在基带上的应用。

下图是升余弦滚降滤波器的原理图,上半部分是滤波器的频谱相应图,下半部分是滤波结果在时间域上的波形图。

我们可以这样思考,发送的基带波形是在一定的带限内的,假如说要求发送的符号率是D,那么图下半部分中可知1/2f0=1/D,所以f0=1/(2*D),或者说D=2*f0,由下半图我们可以看出我们发送的符号的频率是2*f0,这串符号在频谱上的表示(上半图)是个带宽为f0的信号,这个就是采样定理中说的当波形用SINC函数来表示时,符号率是该波形的带宽的两倍,也就是升余弦滚降滤波器在r=0的时候的特性。

当然,我们这里表示的只是发送一个符号的波形的带宽,但是我们可以这样想象,一个系统在任何时候发送符号是使用的带宽f0都是固定的,在1时间段内发送的波形的带宽在f0以内,那么我们完全有理由相信在2时间段内发送的波形的带宽必然在f0以内,所以这样可以理解多个符号组成的波形的带宽是在f0以内的。

从下半图我们可以看到,随着r的增加,符号波形在一个周期段以外的衰减就会加快,这里我们就可以看到它对码间串扰的影响会减小,这个就是升余弦滚降滤波器的作用,但是我们必须清楚的看到,符号率是不变的2*f0,而系统的绝对带宽在增加。根据升余弦滚降滤波器的定义我们得到这样一个关系D=2*f0/(1+r)。从以上的分析过程我们可以认为1/2*f0就是发送的数字信号的周期,也就是对于同样周期的信号我们需要不同的带宽,这个带宽就是发送的数字信号的带宽,而与原始的模拟波的带宽无关。

4.

调制的一些想法。在学习调制的过程中,我一直搞不清什么是调制信号,什么是载波。最后总算明白,原来(一般来讲)调制就是将低频信号(调制信号)携带的信息在另外一个高频的信号(载波)上表现出来,表现的方法可以是改变载波的幅度或者相位或者频率等。当我们看到调制完成的波形是,发现它与载波有不同的幅度或者相位或者频率,从这里的变化我们极可以判断处调制信号有那些信息。载波就是用来携带低频信号要表达的意思的高频信号。之所以用高频是因为在一般情况下高频信号便于传输。

以上是我在学习通信原理中觉得关键要明白的只是点,这样知识才可以融会贯通。

扩展阅读:通信原理总结

华北水利水电学院

NorthChinaInstituteofWaterConservancyandHydroelectricPower

结课论文

课程:通信原理

题目:感知通信掌控未来

院系:信息工程学院专业:计算机科学与技术学号:201*XXXX姓名:银河战舰指导教师:王玲

20XX年X月X日

通信原理总结

题目:感知通信引领未来

“通信原理”是一门主要研究如何传输信息的学科。而信息传输的最基本的问题:简单基本的信道特征、信号在信道上的传输方法。在这门课程中,主要使用的研究方法数学模型,特别是概率模型。在这门课程中,主要讲解了通信基本概念,确定信号和随机信号分析,模拟调制系统,数字基带传输系统,正弦载波数字调制系统,数字信号的最佳接收,模拟信号的数字传输等内容。那么,什么是通信呢?通俗点讲,就是传递消息。而通信的目的则是传递消息中所包含的信息。消息是物质或精神状态的一种反映,如有待于传输的文字、符号、数据或者语音、活动图片等。消息是信息的载体。信息是消息中包含的有效(有意义)内容。实现通信的方式和手段主要有两种:非电的,如旌旗、消息树、烽火台等;电的:如电报、电话、广播、电视、遥控、遥测、因特网和计算机通信等。在自然科学领域涉及“通信”这一术语时,一般均是指“电通信”,包括光通信,因为光也是一种电磁波。信号是消息的承载者,信号常常由消息变换而来,是与消息对应的某种物理量,通常是时间的函数,例如随着时间变化的电压(电流)。通信系统中传送的是信号。信号主要分为模拟信号和数字信号。模拟信号代表消息的信号参量取值连续,数字信号代表消息的信号参量取值为有限个。通常,按照信道中传输的是模拟信号还是数字信号,相应地把通信系统分为模拟通信系统和数字通信系统。在学习这门课程的过程中,也是主要分成这两个体系进行分别研究。在当今社会,数字化似乎已经成为信息的代名词。数字通信的主要优点:(1)抗干扰、抗噪声性能好,且噪声不积累;(2)差错可控;(3)易于与现代技术相结合;(4)易加密,保密性好。当然,它也有一些缺点:(1)频带利用率不高;(2)需要严格的同步系统。下面我从机子学习本课程一学期的经验对这门课程的一些知识点总结一下:

1.分集接收:分散接收,集中处理。在不同位置用多个接收端接收同一信号①空间分集:多副天线接收同一天线发送的信息,分集天线数(分集重数)越多,性能改善越好。接收天线之间的间距d≥3λ。②频率分集:载频间隔大于相关带宽移动通信9001800。③角度分集:天线指向。④极化分集:水平垂直相互独立与地磁有关。

2.起伏噪声:是遍布在时域和频域内的随机噪声,包括热噪声、电子管内产生的散弹噪声和宇宙噪声等都属于起伏噪声。

3.各态历经性:随机过程中的任意一次实现都经历了随机过程的所有可能状态。因此,关于各态历经性的一个直接结论是,在求解各种统计平均(均值或自相关函数等)是,无需做无限多次的考察,只要获得一次考察,用一次实现的“时间平均”值代替过程的“统计平均”值即可,从而使测量和计算的问题大为简化。

部分相应系统:人为地、有规律地在码元的抽样时刻引入码间串扰,并在接收端判决前

加以消除,从而可以达到改善频谱特性,压缩传输频带,是频带利用率提高到理论上的最大值,并加速传输波形尾巴的衰减和降低对定时精度要求的目的。通常把这种波形称为部分相应波形。以用部分相应波形传输的基带系统成为部分相应系统。

多电平调制、意义:为了提高频带利用率,可以采用多电平波形或多值波形。由于多电平波形的一个脉冲对应多个二进制码,在波特率相同(传输带宽相同)的条件下,比特率提高了,因此多电平波形在频带受限的高速数据传输系统中得到了广泛应用。

MQAM:多进制键控体制中,相位键控的带宽和功率占用方面都具有优势,即带宽占用小和比特信噪比要求低。因此MPSK和MDPSK体制为人们所喜用。但是MPSK体制中随着M的增大,相邻相位的距离逐渐减小,使噪声容县随之减小,误码率难于保证。为了改善在M大时的噪声容限,发展出了QAM体制。在QAM体制中,信号的振幅和相位作为作为两个独立的参量同时受到调制。这种信号的一个码元可以表示为:

Sk(t)Akcos(0tk),kTt(k1)T,式中:k=整数;Ak和k分别可以取多个

离散值。

(解决MPSK随着M增加性能急剧下降)

4.相位不连续的影响:频带会扩展;包络产生失真。

5.相干解调与非相干解调:

相干解调:也叫同步检波,解调与调制的实质一样,均是频谱搬移。调制是把基带信号频谱搬到了载频位置,这一过程可以通过一个乘法器与载波相乘来实现。解调则是调制的反过程,即把载频位置的已调信号的频谱搬回到原始基带位置,因此同样可以用乘法器与载波相乘来实现。相干解调时,为了无失真地恢复原基带信号,接收端必须提供一个与接收的已调载波严格同步(同频同相)的本地载波(成为相干载波),他与接收的已调信号相乘后,经低通滤波器取出低频分量,即可得到原始的基带调制信号。相干解调适用于所有现行调制信号的解调。相干解调的关键是接收端要提供一个与载波信号严格同步的相干载波。否则,相干借条后将会使原始基带信号减弱,甚至带来严重失真,这在传输数字信号时尤为严重。

非相干解调:包络检波属于非相干解调,。络检波器通常由半波或全波整流器和低通滤波器组成。它属于非相干解调,因此不需要相干载波,一个二极管峰值包络检波器由二极管VD和RC低通滤波器组成。包络检波器就是直接从已调波的幅度中提取原调制信号。其结构简单,且解调输出时相干解调输出的2倍。

4PSK只能用相干解调,其他的即可用相干解调,也可用非相干解调。6.电话信号非均匀量化的原因:P268

非均匀量化的实现方法通常是在进行量化之前,现将信号抽样值压缩,在进行均匀量化。这里的压缩是用一个非线性电路将输入电压x变换成输出电压y。输入电压x越小,量化间隔也就越小。也就是说,小信号的量化误差也小,从而使信号量噪比有可能不致变坏。为了对不同的信号强度保持信号量噪比恒定,当输入电压x减小时,应当使量化间隔Δx按比例地减小,即要求:Δx∝x。为了对不同的信号强度保持信号量噪比恒定,在理论上要求压缩特性具有对数特性。

(小信号发生概率大,均匀量化时,小信号信噪比差。)

7.A律13折线:P269

ITU国际电信联盟制定了两种建议:即A压缩率和μ压缩率,以及相应的近似算法13折线法和15折线法。我国大陆、欧洲各国以及国际间互联时采用A压缩率及相应的13折线

法,北美、日本和韩国等少数国家和地区采用μ压缩率及15折线法。

A压缩率是指符合下式的对数压缩规律:式中:x为压缩器归一化输入电压;y为压缩器归一化输出电压;A为常数,它决定压缩程度。

Ax1lnAy1lnAx1lnA0x1A1A

x1A律表示式是一条连续的平滑曲线,用电子线路很难准确地实现。现在由于数字电路技

术的发展,这种特性很容易用数字电路来近似实现。13折线特性就是近似于A律的特性。

因为话音信号为交流信号,及输入电压x有正负极性。这就是说在坐标系的第三象限还有对原点奇对称的另一半曲线。第一象限中的第一和第二段折线斜率相同,所以构成一条直线。同样,在第三象限中的第一和第二段折线斜率也相同,并且和第一象限中的斜率相同。所以,这四段折线构成了一条直线。一次,在这正负两个象限中的完整压缩曲线共有13段折线,故称13折线压缩特性。

8.增量调制ΔM过载怎样用图标表示:

译码器恢复的信号时阶梯型电压经过低通滤波器平滑后的解调电压。它与编码器输入模拟信号的波形近似,但是存在失真。将这种失真称为量化噪声。这种量化噪声产生的原因有两个。第一个原因是由于编码、译码是用接替波形去近似表示模拟信号波形,有阶梯波形本身的电压突跳产生失真。这是增量调制的基本量化噪声,又称一般量化噪声。它伴随着信号永远存在,即只要有信号,就有这种噪声。

第二个原因是信号变化过快引起的失真;这种失真成为过载量化噪声。它发生在输入信号斜率的绝对值过大时。由于当抽样频率和量化台阶一定时,阶梯波的最大可能斜率是一定的。若信号上升的斜率超过阶梯波

的最大可能斜率,则阶梯波的上升速度赶不上信号的上升速度,就发生了过载量化噪声。

9.分接与复接:P289

复用的目的是为了扩大通信链路的容量,在一条链路上传输多路独立的信号,即实现多路通信。与频分复用相比,时分复用的主要优点是:便于实现数字通信、易于制造、适于采用集成电路实现、成本较低。时分复用的基本原理中的机械旋转开关,在实际电路中是用抽样脉冲取代的。因此,各路抽样脉冲的频率必须严格相同,而且相位也需要有确定的关系,使各路抽样脉冲保持等间隔的距离。在一个多路复用设备中使各路抽样脉冲严格保持这种关系并不难,因为可以有同一时钟提供各种抽样脉冲。

但是随着通信网的发展,时分复用的设备的各路输入信号不再只是单路模拟信号。在通

信网同往往有多次复用,有若干链路来的多路时分复用信号,再次复用,构成高次复用信号。这是对于高次复用设备而言,其各路输入信号可能是来自不同地点的多路时分复用信号,并且通常来自各地的输入信号的时钟(频率和相位)之间存在误差。所以在低次群合成高次群时,需要将各路输入信号的时钟调整统一。这种

将低次群合并成高次群的过程成为复接,将高次群分解为低次群的过程成为分接。

10.几种同步:

载波同步(载波恢复)

码元同步(时钟同步、时钟恢复、对于二进制码元而言,码元同步又称为位同步。)群同步(帧同步、字符同步)网同步

11.集中插入法:

集中插入法又称连贯式插入法。这种方法中采用特殊的群同步码组,集中插入在信息码组的前头,使得接收时能够容易地立即立即捕获它。因此,要求群同步码的自相关特性曲线具有尖锐的单峰,以便容易地从接收码元序列中识别出来。

在将近16周的学习过程中,我也很高兴受教于王玲老师,她授课风格严谨,但又不失风趣;充分理解我们学计算机的学生,在上课时候难度较大的课时讲解的十分仔细详尽,经常不厌其烦的给我们板书,而不失单单使用多媒体课件。同时课下充分给予我们理解消化的时间,在此我也向老师说一声“您辛苦了!”。

这门课虽然是通信、电子、信息领域中的专业基础课,但作为计算机专业的学生,对此有一定认识是很有好处的,不仅能加强整个对整个计算机系统的认识,而且对将来从事网络方向的研究也颇有裨益。相信不管今后我从事的是否是通信行业,但是在IT领域内,了解额掌握适当的通信专业知识也是十分必要的。在咱们的通信原理课上,我却是学习到了许多许多有趣和复杂的知识,相信今后也会对我从事工作或者掌握通信方式有不小的帮助。

友情提示:本文中关于《通信原理理论总结》给出的范例仅供您参考拓展思维使用,通信原理理论总结:该篇文章建议您自主创作。

来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。


通信原理理论总结》由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
链接地址:http://www.bsmz.net/gongwen/747395.html
相关文章